Academia.eduAcademia.edu

Outline

Fluid-Structure Interaction Problems in Hemodynamics

Abstract

Les objectifs de ce travail sont la description, l'étude et la simulation numérique du problème d'interaction fluide-structure (FSI) appliquéà la dynamique du sang (hémodynamique) dans les artères. L'étude numérique du système cardiovasculaire d'un point de vue hémodynamique est un sujet de recherche très actif, permettant, une fois validé, de prédire le développement de pathologies (par example l'athérosclérose), de mieux comprendre l'influence de facteurs (comme le wall shear stress, WSS) qu'y sont associés et de l'appliquerà la pratique clinique. Ce travail est divisé en trois parties, chacune formée de deux chapitres. Dans la première partie leséquations différentielles qui constituent le problème couplé sont introduites : leś equations de Navier-Stokes dans un domaine déformable pour le fluide (sang), visqueux et incompressible, l'équation de l'élasticité pour la structure (paroi artérielle). En particulier on décrit en détail la représentation deséquations du fluide dans un repère arbitraire Lagrangien-Eulerien (ALE), un choix fréquent en FSI qui sera adopté durant cette thèse. Ensuite on décrit les conditions de couplage : continuité des vitesses et des contraintesà l'interface fluide-structure. On introduitégalement dans la première partie les discrétisations spatiale, enéléments finis, et temporelle du système FSI. Ces discrétisations permettent de représenter le système d'équations dans un espace de dimension finie, ce qui mèneà un problème discret dont la solution est unique. Le choix de la discrétisation temporelle influence deux aspects : la discrétisation en temps des deux problèmes (fluide et structure) et celle des conditions de couplage (continuité des vitesses et des contraintes). Pour les deux aspects le choix peut affecter la stabilité du système discret. Une description concernant en particulier la stabilité du système se trouveà la fin de la première partie de ce travail. Le système d'équations discrétisé n'est pas linéaire, le fait que le domaine du fluide dépende du déplacement de la structure, ainsi que la formulation ALE pour le fluide, introduisent une forte nonlinéarité dont le traitement est un des deux arguments principaux de la deuxième partie de cette thèse. Il est souvent proposé dans la littérature de résoudre la nonlinéarité du système FSI en appliquant la méthode du point fixe. Elle a pour avantages d'être robuste et d'avoir une implémentation assez simple. Par contre, dans sa forme classique, cette méthode présente le désavantage de ne pasêtre efficace dans tous les cas, notamment l'hémodynamique. Un algorithme plus performant, qui est utilisé dans ce cas, est celui de Newton. La difficulté principale de cette méthode vient du calcul de la matrice Jacobienne, qui requiert l'évaluation des dérivées des termes nonlinéaires. En particulier, la nonlinéarité dueà la dépendance du domaine fluide du déplacement de la la structure fait intervenir des dérivées de forme dans le Jacobien du système. Le calcul analytique et l'assemblage de ces dérivées ne sont pas triviaux (ces termes sont souvent négligés ou approximés dans la littérature), et sont décrits dans le troisième chapitre. A la fin de ce chapitre on décrit l'implémentation de cette partie dans un code auxéléments finis, ce qui constitue une contribution originale de ce travail. Dans le quatrième chapitre onétudie des méthodes de résolution du système linéaire (Ja-cobien). Une méthode efficace normalement utilisée pour ce type de systèmes (grands, creux et nonlinéaires) est GMRES. Cette méthode est utilisée normalement dans les cas pratiques avec un préconditionneur. Après avoir résumé des méthodes utilisées en FSI pour résoudre le système linéairisé, un nouveau type de préconditionneurs est proposé. Ces preconditionnerus permettent de traiter séparément les blocs qui correspondent aux problèmes différents (comme fluide et structure). Une analyse proposée pour ce type de préconditionneurs montre que le conditionnement du système global préconditionné ne dépend que du conditionnement des problèmes découplés. Dans la troisième partie, les méthodes décrites dans les chapitres précédents sont appliquéesà des cas cliniques. Plusieurs battements cardiaques consécutifs sont simulé dans le cas de l'aorte thoracique d'un sujet sain, ainsi que dans le cas d'un pontage fémoro-poplité. Le WSS est calculé et différentes méthodes sont comparées (modèle 1D, paroi rigide, FSI), ainsi que différentes discrétisations spatiales et temporelles. Enfin dans le dernier chapitre, les résultats de scalabilité forte et faible sont montrés, sur des maillages différents, avec différentes méthodes. Les simulations de ce chapitre ontété réalisées sur des clustersà haute performance (Cray XT5, Cray XT6, Blue Gene/P).

References (184)

  1. C. Arthur Chang, D. Coutand, and S. Shkoller, Navier- Stokes equations interacting with a nonlinear elastic fluid shell, http://arxiv.org/abs/math.AP/0611670, 2006.
  2. M. Astorino, F. Chouly, and M. A. Fernández, Robin based semi-implicit cou- pling in fluid-structure interaction: Stability analysis and numerics, SIAM J. Sci. Comput. 31 (2009), no. 6, 4041-4065.
  3. O. Axelsson and J. Karátson, Condition number analysis for various form of block matrix preconditioners, Electr. Trans. Numer. Anal. 36 (2010), 168-194.
  4. L. Antiga, Patient-specific modeling of geometry and blood flow in large arter- ies, Ph.D. thesis, Politecnico di Milano, 2002, p. 190.
  5. O. Axelsson and P. S. Vassilevski, Algebraic multilevel preconditioning meth- ods, i, Numer. Math. 56 (1989), 157-177.
  6. O. Axelsson, Iterative solution methods, Cambridge University Press, New York, 1994.
  7. I. Babuska and A. Aziz, On the angle condition in the finite element method, SIAM J. Num. Anal. 13 (1976), 214-226.
  8. A. L. Braun and A. M. Awruch, A partitioned model for fluid-structure in- teraction problems using hexahedral finite elements with one-point quadrature, Int. J. Numer. Meth. Engng. 79 (2009), 505-549.
  9. D. Balzani, Polyconvex anisotropic energies and modelling of damage applied to arterial wall, Ph.D. thesis, Universität Duisburg-Essen, Essen, 2006.
  10. A. T. Barker and X.-C. Cai, NKS for fully coupled fluid-structure interaction with application, Lect. Notes Comput. Sci. Eng. 70 (2009), 275-282.
  11. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, J. Comput. Phys. 229 (2010), no. 3, 642-659.
  12. Two-level newton and hybrid schwarz preconditioners for fluid- structure interaction, SIAM J. Sci. Comput. 32 (2010), no. 4, 2395-2417. BIBLIOGRAPHY [BCA + 10]
  13. C. Bekas, A. Curioni, P. Arbenz, C. Flaig, G. H. Van Lenthe, R. Müller, and A. J. Wirth, Extreme scalability challenges in micro-finite element simulations of human bone, Concurr. Comput. : Pract. Exper. 22 (2010), 2282-2296.
  14. Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang, Isogeometric fluid- structure interaction: theory, algorithms, and computations, Comput. Mech. 43 (2008), no. 1, 3-37.
  15. E. Bechet, J.-C. Cuilliere, and F. Trochu, Generation of a finite element mesh from stereolithography (stl) files, Computer-Aided Design 34 (2002), no. 1, 1-17.
  16. H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid- structure evolution problem, J. Math. Fluid. Mech. 6 (2004), 21-52.
  17. E. Burman and M. Fernndez, Continuous interior penalty finite element method for the time-dependent navierstokes equations: space discretization and convergence, Numerische Mathematik 107 (2007), 39-77, 10.1007/s00211-007- 0070-5.
  18. E. Burman and M. A. Fernández, Stabilization of explicit coupling in fluid- structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 5-8, 766-784.
  19. E. Burman, M. . Fernndez, and P. Hansbo, Edge stabilization for the incom- pressible Navier-Stokes equations: a continuous interior penalty method, Tech. report, 2004, EPFL-IACS report 23.2004.
  20. M. Batdorf, L. Freitag, and C. Ollivier-Gooch, A computational study of the effect of unstructured mesh quality on solution efficiency, Proc. 13th AIAA Computational Fluid Dynamics Conf., 1997.
  21. D. Boffi and L. Gastaldi, Stability and geometric conservation laws for ale formulations, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 42-44, 4717-4739.
  22. Y. Bazilevs, J. Gohean, T. Hughes, R. Moser, and Y. Zhang, Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 45-46, 3534-3550.
  23. M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numerica 14 (2005), 1-137.
  24. H. Borouchaki, P. Laug, and P. George, Parametric surface meshing using a combined advancing-front generalized delaunay approach, Int. J. Numer. Meth. Engng. 49 (2000), 223-259.
  25. A. Barker, C. Lanning, and R. Shandas, Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast mri, Ann. Biomed. Eng. 38 (2010), 788-800.
  26. S. Badia, F. Nobile, and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys. 227 (2008), no. 14, 7027-7051.
  27. J. Bonnemain, From medical images to numerical simulations, Tech. report, MATHICSE, 2009.
  28. S. Badia, A. Quaini, and A. Quarteroni, Modular vs. non-modular precon- ditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 49-50, 4216-4232.
  29. Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput. 30 (2008), no. 4, 1778-1805.
  30. B. Beulen, M. Rutten, and F. van de Vosse, A time-periodic approach for fluid-structure interaction in distensible vessels, J. Fluids Struct. 25 (2009), no. 5, 954-966.
  31. A. Burleson and V. Turitto, Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior, Thromb. Haemost. 76 (1996), 118-123.
  32. CBD + 07] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen, Hypergraph-based dynamic load balancing for adaptive scientific computations, Proc. of 21st International Parallel and Distributed Processing Symposium (IPDPS'07), IEEE, 2007.
  33. A. Chambolle, B. Desjardins, M. J. Esteban, and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, Journal of Mathematical Fluid Mechanics 7 (2005), 368-404.
  34. P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni, Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics, SIAM J. Sci. Comput. (2011), accepted.
  35. P. Causin, J.-F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 42-44, 4506 -4527.
  36. J. Chung and G. M. Hulbert, A time integration algorithm for structural dy- namics with improved numerical dissipation: The generalized-α method, Jour- nal of Applied Mechanics 60 (1993), no. 2, 371-375.
  37. X.-C. Cai and D. E. Keyes, Nonlinearly preconditioned inexact Newton algo- rithms, SIAM J. Sci. Comput. 24 (2002), no. 1, 183-200 (electronic).
  38. G.-H. Cottet, E. Maitre, and T. Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, M2AN Math. Model. Nu- mer. Anal. 42 (2008), no. 3, 471-492.
  39. C. Chevalier and F. Pellegrini, Pt-scotch: A tool for efficient parallel graph ordering, Parallel Comput. 34 (2008), 318-331.
  40. CRD + 11] P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quarteroni, Fluid-structure interaction simulation of aortic blood flow, Computers & Fluids 43 (2011), no. 1, 46-57, Symposium on High Accuracy Flow Simulations. Special Issue Dedicated to Prof. Michel Deville.
  41. A. Curnier, Mécanique des solides déformables vol.1 cinématique, dynamique, énergétique, Presses polytechniques et universitaires romandes, Lausanne, 2004.
  42. Y. Cheng and H. Zhang, Immersed boundary method and lattice boltzmann method coupled fsi simulation of mitral leaflet flow, Computers & Fluids 39 (2010), no. 5, 871-881.
  43. T. A. Davis, Direct methods for sparse linear systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.
  44. J. Degroote, S. Annerel, and J. Vierendeels, A multi-solver quasi-newton method for the partitioned simulation of fluid-structure interaction, IOP Con- ference Series: Materials Science and Engineering 10 (2010), no. 1, 12-20.
  45. J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels, Stability of a coupling technique for partitioned solvers in fsi applications, Computers & Structures 86 (2008), no. 23-24, 2224-2234.
  46. J. Degroote, K.-J. Bathe, and J. Vierendeels, Performance of a new parti- tioned procedure versus a monolithic procedure in fluid-structure interaction, Computers and Structures 87 (2009), no. 11-12, 793 -801, Fifth MIT Con- ference on Computational Fluid and Solid Mechanics.
  47. S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni, Fluid-structure al- gorithms based on Steklov-Poincaré operators, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5797-5812.
  48. Heterogeneous domain decomposition methods for fluid-structure in- teraction problems, Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55, Springer, Berlin, 2007, pp. 41-52.
  49. S. Deparis, M. Discacciati, and A. Quarteroni, A domain decomposition frame- work for fluid-structure interaction problems, Proceedings of the Third In- ternational Conference on Computational Fluid Dynamics (ICCFD3), 2006, pp. 41-58.
  50. S. Deparis, Numerical analysis of axisymmetric flows and methods for fluid- structure interaction arising in blood flow simulation, Ph.D. thesis, École Poly- technique Fédérale de Lausanne, Lausanne, 2004.
  51. S. Deparis, M. A. Fernández, and L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, M2AN Math. Model. Numer. Anal. 37 (2003), no. 4, 601-616.
  52. J. Donea, S. Giuliani, and J. Halleux, An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech. Engrg. 33 (1982), no. 1-3, 689-723.
  53. W. G. Dettmer and D. Perić, A fully implicit computational strategy for strongly coupled fluid-solid interaction, Arch. Comput. Methods Eng. 14 (2007), no. 3, 205-247.
  54. H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block preconditioners based on approximate commutators, SIAM J. Sci. Comput 27 (2006), 1651-1668.
  55. EHS + 08] H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible navier-stokes equations, J. Comput. Phys. 227 (2008), 1790- 1808.
  56. H. Elman, V. E. Howle, J. Shadid, and R. Tuminaro, A parallel block multi- level preconditioner for the 3d incompressible navier-stokes equations, J. Com- put. Phys 187 (2003), 504-523.
  57. H. Elman, D. Silvester, and A. Wathen, Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, ch. 8, Oxford Uni- versity Press, Oxford, 2005.
  58. F. Fontan and E. Baudet, Surgical repair of tricuspid atresia, Thorax 26 (1971), no. 3, 240-248.
  59. T. Fanion, M. Fernández, and P. L. Tallec, Deriving adequate formulations for fluid structure interaction problems: from ALE to transpiration, Rév. Eu- ropéenne Élém. Finis 9 (2000), no. 6-7, 681-708.
  60. C. Farhat, P. Geuzaine, and C. Grandmont, The discrete geometric conser- vation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids, J. Comput. Phys. 174 (2001), no. 2, 669-694.
  61. M. A. Fernández, J.-F. Gerbeau, and C. Grandmont, A projection semi- implicit scheme for the coupling of an elastic structure with an incompressible fluid, Internat. J. Numer. Methods Engrg. 69 (2007), no. 4, 794-821.
  62. L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3d and 1d navier-stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg. 191 (2001), no. 6-7, 561-582.
  63. L. Formaggia, J.-F. Gerbeau, F. Nobile, and A. Quarteroni, Numerical treat- ment of defective boundary conditions for the Navier-Stokes equations., SIAM J. Numer. Anal. 40 (2002), no. 1, 376-401 (English).
  64. L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, Numerical treat- ment of defective boundary conditions for the navier-stokes equations, SIAM J. Numer. Anal. 40 (2002), 376-401.
  65. C. Farhat and M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic prob- lems, Comput. Methods Appl. Mech. Engrg. 182 (2000), 499-515.
  66. H. Flanders, Differential forms with applications to the physical sciences, Dover books on mathematics, Dover Publications, 1989.
  67. C. Farhat, M. Lesoinne, and P. L. Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Engrg. 157 (1998), no. 1-2, 95- 114.
  68. M. Fernández and M. Moubachir, A Newton method using exact jacobians for solving fluid-structure coupling, Computers and Structures 83 (2005), no. 2-3, 127-142.
  69. L. Formaggia, A. Quarteroni, and A. Veneziani (eds.), Cardiovascular math- ematics: Modeling and simulation of the circulatory system, Modeling, Simu- lation and Applications, vol. 1, Springer, Milan, 2009.
  70. I. Fried, Condition of finite element matrices generated from nonuniform meshes, AIAA Journal 10 (1972), 219-221.
  71. Y. C. Fung, Biomechanics : circulation, 2nd ed ed., Springer, New York, 1997. [FVCJ + 06] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. Hughes, and C. A. Taylor, A coupled momentum method for modeling blood flow in three- dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5685-5706, John H. Argyris Memorial Issue. Part II.
  72. C. Farhat, K. G. van der Zee, and P. Geuzaine, Provably second-order time- accurate loosely-coupled solution algorithms for transient nonlinear computa- tional aeroelasticity, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 17- 18, 1973-2001.
  73. L. Formaggia, A. Veneziani, and C. Vergara, A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics, SIAM J. Sci. Comput. 46 (2008), no. 6, 2769-2794.
  74. C. Förster, W. A. Wall, and E. Ramm, Artificial added mass instabilities in se- quential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 7, 1278-1293.
  75. A. Gray, E. Abbena, and S. Salamon, Modern differential geometry of curves and surfaces with mathematica, third edition (studies in advanced mathemat- ics), Chapman & Hall/CRC, 2006.
  76. Y. Gobin, J. Counord, and P. Flaud, In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation., J. Neuroradiology 36 (1994), 530-536.
  77. G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic, Stable loosely-coupled- type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys. 228 (2009), no. 18, 6916-6937.
  78. L. Gerardo-Giorda, F. Nobile, and C. Vergara, Analysis and optimization of robin-robin partitioned procedures in fluid-structure interaction problems, SIAM J. Sci. Comput. 48 (2010), no. 6, 2091-2116.
  79. L. Grinberg and G. E. Karniadakis, Extrapolation-based acceleration of itera- tive solvers: Application to simulation of 3d flows, Commun. Comput. Phys. 9 (2010), no. 3, 607-626.
  80. M. W. Gee, U. Küttler, and W. A. Wall, Truly monolithic algebraic multigrid for fluid-structure interaction, Int. J. Numer. Meth. Engng. 85 (2010), 987- 1016.
  81. A. Green and P. Naghdi, A direct theory of viscous fluid flow in pipes. I. Basic general developments, Phil. Trans. R. Soc. Lond., Ser. A 342 (1993), 525-542.
  82. A. Green, P. Naghdi, and M. Stallard, A direct theory of viscous fluid flow in pipes. II. Flow of incompressible viscous fluid in curved pipes, Phil. Trans. R. Soc. Lond., Ser. A 342 (1993), 543-572.
  83. V. Graves, C. Strother, and R. A. Partington, CR, Flow dynamics of lateral carotid artery aneurysms and their effects on coils and balloons: an experi- mental study in dogs., AJNR Am J Neuroradiol 13 (1992), 189-196.
  84. J. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, M2AN Math. Model. Numer. Anal. 37 (2003), no. 4, 663-680.
  85. F. Gao, M. Watanabe, and T. Matsuzawa, Fluid-structure interaction within a layered aortic arch model., J. Biol. Phys. 32 (2006), no. 5, 435-454.
  86. D. Giddens, C. Zarins, and S. Glagov, The role of fluid mechanics in localisa- tion and detection of atherosclerosis., J Biomech Engng 115 (1993), 588-594.
  87. P. Hansbo, Nitsche's method for interface problems in computational mechan- ics, GAMM-Mitt. (2005), no. 28/2, 183-206.
  88. M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 1-2, 1-23.
  89. G. Holzapfel, T. Gasser, and R. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, Journal of Elasticity (2000), 1-48.
  90. M. Heil, A. L. Hazel, and J. Boyle, Solvers for large-displacement fluid- structure interaction problems: segregated versus monolithic approaches, Com- putational Mechanics 43 (2008), no. 1, 91-101.
  91. T. J. R. Hughes and J. Lubliner, On the one-dimensional theory of blood flow in the larger vessels, Math. Biosci. 18 (1973), 161-170.
  92. G. A. Holzapfel and R. W. Ogden, Mechanics of biological tissue, Springer Verlag, 2006.
  93. J. Hron, Fluid structure interaction with applications in biomechanics, Ph.D. thesis, Charles University, Prague, 2001.
  94. G. A. Holzapfel, M. Stadler, and C. A. J. Schulze-Bauer, A layer-specific three-dimensional model for the simulation of balloon angioplasty using mag- netic resonance imaging and mechanical testing, Ann. Biomed. Eng. 30 (2002), no. 6, 753-767.
  95. J. Hron and S. Turek, A monolithic fem/multigrid solver for an ale formu- lation of fluid-structure interaction with applications in biomechanics, Fluid- Structure Interaction (H.-J. Bungartz and M. Sch afer, eds.), Lecture Notes in Computational Science and Engineering, vol. 53, Springer Berlin Heidelberg, 2006, pp. 146-170.
  96. T. J. R. Hughes, A study of the one-dimensional theory of arterial pulse propa- gation, Report 74-13, University of California Berkeley, Structural Engineering Laboratory, December 1974.
  97. B. Hübner, E. Walhorn, and D. Dinkler, A monolithic approach to fluid- structure interaction using space-time finite elements, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 23-26, 2087 -2104.
  98. IBM journal of Research and Development staff, Overview of the ibm blue gene/p project, IBM J. Res. Dev. 52 (2008), 199-220.
  99. Y. Ito and K. Nakahashi, Direct surface triangulation using stereolithography data, AIAA Journal 40 (2002), no. 3, 490-496.
  100. S. R. Idelsohn, E. Oate, and F. D. Pin, A lagrangian meshless finite element method applied to fluid-structure interaction problems, Computers & Struc- tures 81 (2003), no. 8-11, 655-671, K.J Bathe 60th Anniversary Issue.
  101. R. Jaiman, P. Geubelle, E. Loth, and X. Jiao, Combined interface boundary condition method for unsteady fluid-structure interaction, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 1-4, 27-39.
  102. K. E. Jansen, C. H. Whiting, and G. M. Hulbert, A generalized-α method for integrating the filtered navier-stokes equations with a stabilized finite element method, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 3-4, 305-319.
  103. D. E. Keyes, How scalable is domain decomposition in practice?, Proceedings of the 11th Intl. Conf. on Domain Decomposition Methods (1998), 286-297. [KGF + 09] U. Küttler, M. Gee, C. Förster, A. Comerford, and W. A. Wall, Coupling strategies for biomedical fluid-structure interaction problems, Commun. Nu- mer. Meth. Engng. 26 (2009), 305-321.
  104. A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput. 19 (1998), no. 1, 172-184.
  105. J. Kraus and S. Margenov, Robust algebraic multilevel methods and algorithms, Walter de Gruyter, 2009.
  106. J. Korsgaard, On the representation of symmetric tensor-valued isotropic func- tions, International Journal of Engineering Science 28 (1990), no. 12, 1331- 1346.
  107. A. Klawonn and O. Rheinbach, Highly scalable parallel domain decomposi- tion methods with an application to biomechanics, Z. angew. Math. Mech. 90 (2010), 5-32.
  108. P. Krzyżanowski, On block preconditioners for saddle point problems with sin- gular or indefinite (1, 1) block, Numer. Linear Algebra Appl. (2010), 1099- 1506.
  109. H. Kim, I. Vignon-Clementel, C. Figueroa, J. LaDisa, K. Jansen, J. Feinstein, and C. Taylor, On coupling a lumped parameter heart model and a three- dimensional finite element aorta model, Ann Biomed Eng. (2009), 2153-69.
  110. U. Küttler and W. A. Wall, The dilemma of domain decomposition approaches in fluid-structure interactions with fully enclosed incompressible fluids, Do- main decomposition methods in science and engineering XVII, Lect. Notes Comput. Sci. Eng., vol. 60, Springer, Berlin, 2008, pp. 575-582.
  111. U. Küttler and W. A. Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computational Mechanics 43 (2008), no. 1, 61-72.
  112. Vector extrapolation for strong coupling fluid-structure interaction solvers, Journal of Applied Mechanics 76 (2009), no. 2. [KWO + 97] R. Krams, J. Wentzel, J. Oomen, R. Vinke, J. Schuurbiers, P. de Feyter, P. Ser- ruys, and C. Slager, Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. combining 3D reconstruction from angiog- raphy and IVUS (ANGUS) with computational fluid dynamics., Arterioscl., Thromb. Vascul. Biol. 17 (1997), no. 10, 2061-2065.
  113. Y. W. Kwon, Coupling of lattice boltzmann and finite element methods for fluid-structure interaction application, Journal of Pressure Vessel Technology 130 (2008), no. 1.
  114. G. J. Langewouters, Visco-elasticity of the human aorta in vitro in relation to pressure and age, Ph.D. thesis, Free University, Amsterdam, 1982.
  115. P. Laug and H. Boruchaki, Interpolating and meshing 3d surface grids, Int. J. Numer. Meth. Engng. 58 (2003), 209-225.
  116. LDG + 08] Y. Liu, C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab, Surrounding tis- sues affect vessel mechanics, AJP -Heart and Circulatory Physiology (2008), no. 294, 514-523.
  117. J.-L. Lions, Quelques mèthodes de rèsolution des problèmes aux limites non linèaires, Dunod, Paris, 1969.
  118. P. Le Tallec and J. Mouro, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg 190 (2001), 3039-3067.
  119. B. Levy, S. Petitjean, N. Ray, and J. Maillot, Least squares conformal maps for automatic texture atlas generation, Computer Graphics (Proceedings of SIGGRAPH 02), 2002, pp. 362 -371.
  120. P. T. Lin, J. N. Shadid, M. Sala, R. S. Tuminaro, G. L. Hennigan, and R. J. Hoekstra, Performance of a parallel algebraic multilevel preconditioner for sta- bilized finite element semiconductor device modeling, J. Comput. Phys. 228 (2009), no. 17, 6250-6267.
  121. A. C. I. Malossi, P. J. Blanco, S. Deparis, and A. Quarteroni, Algorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows, Accepted in Int. J. Numer. Method. Biomed. Eng., 2011.
  122. MCdWV + 10] E. Marchandise, C. Carton de Wiart, W. Vos, C. Geuzaine, and J.-F. Remacle, High quality surface remeshing using harmonic maps. Part II: Surfaces with high genus and of large aspect ratio, Int. J. Numer. Meth. Engng. (2010), accepted.
  123. E. Marchandise, P. Crosetto, C. Geuzaine, J.-F. Remacle, and E. Sauvage, Quality open source mesh generation for cardiovascular flow simulations, Mod- elling Physiological Flow (D. Ambrosi, A. Quarteroni, and G. Rozza, eds.), Springer Series on Modeling, Simulation and Applications, Springer-Verlag, 2011, accepted.
  124. E. Marchandise, G. Compère, M. Willemet, G. Bricteux, C. Geuzaine, and J.-F. Remacle, Quality meshing based on stl triangulations for biomedical sim- ulations, Int. J. Numer. Meth. Engng. 83 (2010), 876-889.
  125. J. R. Magnus and H. Neudecker, Matrix differential calculus with applications in statistics and econometrics, 2nd ed., John Wiley & Sons, 1999.
  126. H. G. Matthies, R. Niekamp, and J. Steindorf, Algorithms for strong cou- pling procedures, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 17-18, 2028-2049.
  127. U. Mayer, A. Popp, A. Gerstenberger, and W. Wall, 3d fluidstructure-contact interaction based on a combined xfem fsi and dual mortar contact approach, Computational Mechanics 46 (2010), 53-67, 10.1007/s00466-010-0486-0.
  128. H. G. Matthies and J. Steindorf, Partitioned strong coupling algorithms for fluid-structure interaction, Computers & Structures 81 (2003), no. 8-11, 805- 812, K.J Bathe 60th Anniversary Issue.
  129. D. P. Mok and W. A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, Trends in Computational Structural Mechanics (K. Schweizerhof and W. Wall, eds.), K.U. Bletzinger, CIMNE, Barcelona, 2001.
  130. D. P. Mok, W. A. Wall, and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, Computational Fluid and Solid Mechanics (K. Bathe, ed.), Elsevier, 2001, pp. 1325-1328.
  131. MXA + 11] P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Tay- lor, and J. F. Gerbeau, External tissue support and fluid-structure simulation in blood flows., to appear in Biomechanics and Modeling in Mechanobiology (2011).
  132. W. Nichols and M. O'Rourke, Mcdonald's blood flow in arteries: Theoretical, experimental and clinical principles, 5th ed., Hodder Arnold, London, 2005.
  133. F. Nobile, Numerical Approximation of Fluid-Structure Interaction Prob- lems with Application to Haemodynamics, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2001.
  134. W. W. Nichols, M. F. O'Rourke, C. Hartley, and D. A. McDonald, Mcdonald's blood flow in arteries : theoretical, experimental, and clinical principles, 4th ed., Arnold ; Oxford University Press, New York, 1998.
  135. Y. Notay, An aggregation-based algebraic multigrid method, etna 37 (2010), 123-146.
  136. N. Noori, R. Scherer, and K. Perktold, lood flow in distal end-to-side anasto- moses with ptfe and a venous patch: results of an in vitro flow visualisation study., Eur J Vasc EndoVasc Surg 18 (1999), 191-200.
  137. F. Nobile and C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. Comput. 30 (2008), no. 2, 731-763.
  138. E. Oñate and R. Owen, Particle-based methods: Fundamentals and applica- tions, Computational Methods in Applied Sciences, vol. 25, Springer, 2011.
  139. J. T. Ottesen, M. S. Olufsen, and J. K. Larsen, Applied mathematical models in human physiology, Society for Industrial and Applied Mathematics, Philade- phia, PA, 2004.
  140. N. Parolini and E. Burman, Subgrid edge stabilization for transport equations, Tech. report, 2005, EPFL-IACS report 09.2005.
  141. G. Pena and C. Prud'hom, Construction of a high order fluid-structure inter- action solver, J. Comput. Appl. Math. 234 (2010), 2358-2365.
  142. G. Pena, C. Prud'homme, and A. Quarteroni, High order methods for the ap- proximation of the incompressible navier-stokes equations in a moving domain, Tech. report, 2010, MOX report 25.
  143. K. Perktold and G. Rappitsch, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, J. Biomech. 28 (1995), no. 7, 845 -856.
  144. M. Pennacchio and V. Simoncini, Algebraic multigrid preconditioners for the bidomain reaction-diffusion system, Appl. Numer. Math. 59 (2009), 3033- 3050.
  145. L. F. Pavarino and O. B. Widlund, BDDC and FETI-DP preconditioners for spectral element discretizations of almost incompressible elasticity, Spectral and High Order Methods for Partial Differential Equations (J. S. Hesthaven and E. M. Ronquist, eds.), Lecture Notes in Computational Science and En- gineering, vol. 76, Springer Berlin Heidelberg, 2011, pp. 479-486.
  146. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure in- teraction based on an algebraic fractional step method, Math. Models Methods Appl. Sci. 17 (2007), no. 6, 957-983.
  147. A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, Texts in Ap- plied Mathematics, vol. 37, Springer-Verlag, New York, 2000.
  148. A. Quaini, Algorithms for fluid-structure interaction problems arising in hemo- dynamics, Ph.D. thesis, EPFL, Lausanne, 2009.
  149. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23, Springer- Verlag, Berlin, 1994. MR 95i:65005
  150. A. Quarteroni and A. Valli, Domain decomposition methods for partial differ- ential equations, Oxford Science Publications, Oxford, 1999. [RBP + 10]
  151. P. Reymond, Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos, Valida- tion of a person specific 1-d model of the systemic arterial tree, XII Mediter- ranean Conference on Medical and Biological Engineering and Computing 2010 (R. Magjarevic, J. H. Nagel, P. D. Bamidis, and N. Pallikarakis, eds.), IFMBE Proceedings, vol. 29, Springer Berlin Heidelberg, 2010, pp. 578-579.
  152. P. Reymond, P. Crosetto, S. Deparis, A. Quarteroni, and N. Stergiopulos, Physiological aspects of fluid structure interaction and their effects on blood flow in a person-specific aorta., Submitted, 2011.
  153. J.-F. Remacle, C. Geuzaine, G. Compère, and E. Marchandise, High quality surface remeshing using harmonic maps, Int. J. Numer. Meth. Engng. 83 (2010), 403-425.
  154. P. Reymond, F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos, Vali- dation of a one-dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol 297 (2009), no. 1, H208-222.
  155. J. F. Rodríguez, C. Ruiz, M. Doblaré, and G. A. Holzapfel, Mechanical stresses in abdominal aortic aneurysms: Influence of diameter, asymmetry, and ma- terial anisotropy, J. Biomech. Eng. 130 (2008), no. 2, 21-23.
  156. J. W. Ruge and K. Stüben, Algebraic multigrid, Multigrid methods, Frontiers Appl. Math., vol. 3, SIAM, Philadelphia, PA, 1987, pp. 73-130.
  157. E. Ramm, M. Scheven, C. Förster, and W. A. Wall, Interaction of incompress- ible flows and thin-walled structures, ECCOMAS Multidisciplinary Jubilee Symposium (J. Eberhardsteiner, C. Hellmich, H. A. Mang, and J. Priaux, eds.), Computational Methods in Applied Sciences, vol. 14, Springer Nether- lands, 2009, pp. 219-233.
  158. M. Rehman, C. Vuik, and G. Segal, Block preconditioners for the incompress- ible stokes problem, Large-Scale Scientific Computing (I. Lirkov, S. Margenov, and J. Wasniewski, eds.), Lecture Notes in Computer Science, vol. 5910, Springer Berlin / Heidelberg, 2010, pp. 829-836.
  159. M. Sala, An object-oriented framework for the development of scalable parallel multilevel preconditioners, ACM Trans. Math. Softw. 32 (2006), 396-416.
  160. M. Sarkis, Partition of unity coarse spaces and schwarz methods with harmonic overlap, Lect. Notes Comput. Sci. Eng. 23 (2002), 75-92.
  161. A. M. Shaaban and A. Duerinckx, Wall shear stress and early atherosclerosis, American Journal of Roentgenology 174 (2000), 1657-1665.
  162. G. Scovazzi and T. Hughes, Lecture notes on continuum mechanics on ar- bitrary moving domains, Tech. report, Sandia National Laboratories, Albu- querque, NM, 2007.
  163. V. Simoncini, Block triangular preconditioners for symmetric saddle-point problems, Appl. Numer. Math. 49 (2004), no. 1, 63-80.
  164. K. Schloegel, G. Karypis, and V. Kumar, Parallel static and dynamic multi- constraint graph partitioning, Concurrency and Computation: Practice and Experience 14 (2002), no. 3, 219-240.
  165. D. Szczerba, R. McGregor, and G. Szekely, High quality surface mesh genera- tion for multi-physics bio-medical simulations, Computational Science -ICCS 2007, vol. 4487, Springer Berlin, 2007, pp. 906-913.
  166. K. Stein, T. Tezduyar, and R. Benney, Computational methods for modeling parachute systems, Computing in Science and Engineering 5 (2003), 39-46.
  167. J. Sokolowski and J. P. Zolesio, Introduction to shape optimization : shape sen- sitivity analysis, Berlin ; New York : Springer-Verlag, 1992 (English), Includes bibliographical references (p. [240]-250).
  168. D. Tromeur-Dervout and Y. Vassilevski, Pod acceleration of fully implicit solver for unsteady nonlinear flows and its application on grid architecture, Adv. Eng. Softw. 38 (2007), 301-311.
  169. T. E. Tezduyar, Finite element methods for fluid dynamics with moving bound- aries and interfaces, Encyclopedia of Computational Mechanics, John Wiley & Sons, Ltd, 2004.
  170. H. M. Tufo and P. F. Fischer, Fast parallel direct solvers for coarse grid prob- lems, J. Parallel Distrib. Comput. 61 (2001), 151-177.
  171. T. E. Tezduyar, S. Sathe, and K. Stein, Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 41-43, 5743-5753.
  172. A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory, Springer Series in Computational Mathematics, vol. 34, Springer- Verlag, Berlin, 2005.
  173. P.-S. Tsai and C. B. Yucha, Noninvasive measurements of central arterial pressure and distensibility by arterial applanation tonometry with a generalized transfer function: Implications for nursing, Heart & Lung: The Journal of Acute and Critical Care 30 (2001), no. 6, 437-444.
  174. H. A. Van der Vorst, Iterative Krylov methods for large linear systems, Cam- bridge Monographs on Applied and Computational Mathematics, vol. 13, Cambridge University Press, Cambridge, 2003.
  175. C. Vergara, Nitsches method for defective boundary value problems in incom- pressibile fluid-dynamics, J. Sci. Comput. 45 (2010), no. 1-3.
  176. P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggre- gation for second and fourth order elliptic problems, Computing 56 (1996), no. 3, 179-196.
  177. J. van Prehn, K. Vincken, S. Sprinkhuizen, M. Viergever, J. van Keulen, J. van Herwaarden, F. Moll, and L. Bartels, Aortic pulsatile distention in young healthy volunteers is asymmetric: Analysis with ecg-gated mri, Euro- pean Journal of Vascular and Endovascular Surgery 37 (2009), no. 2, 168 - 174.
  178. R. N. Vaishnav and J. Vossoughi, Residual stress and strain in aortic segments, J. Biomech. 20 (1987), no. 3, 235 -237, 239.
  179. A. Veneziani and C. Vergara, Flow rate defective boundary conditions in haemodynamics simulations, Int. J. Numer. Meth. Engng. 47 (2005), no. 8-9, 803-816.
  180. H. Wang, J. Chessa, W. K. Liu, and T. Belytschko, The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, com- pressibility and thin members, Internat. J. Numer. Methods Engrg. 74 (2008), no. 1, 32-55.
  181. D. Wang, O. Hassan, K. Morgan, and N. Weatheril, Enhanced remeshing from stl files with applications to surface grid generation, Commun. Numer. Meth. Engng 23 (2007), 227-239.
  182. J.-Z. Wu, H.-Y. Ma, and M.-D. Zhou, Vorticity and vortex dynamics, 1st ed., Springer, May 2006.
  183. E. Zeidler, Nonlinear functional analysis and its applications, part i: Fixed- point theorems, Acta Applicandae Mathematicae 24 (1991), 312-314.
  184. A. R. Zhao, M. L. Field, K. Digges, and D. Richens, Blunt trauma and acute aortic syndrome: a three-layer finite-element model of the aortic wall, Euro- pean Journal of Cardio-Thoracic Surgery 34 (2008), no. 3, 623-629.