Academia.eduAcademia.edu

Outline

On Topological Structure of Web Services Networks for Composition

Abstract

In order to deal efficiently with the exponential growth of the Web services landscape in composition life cycle activities, it is necessary to have a clear view of its main features. As for many situations where there is a lot of interacting entities, the complex networks paradigm is an appropriate approach to analyze the interactions between the multitudes of Web services. In this paper, we present and investigate the main interactions between semantic Web services models from the complex network perspective. Results show that both parameter and operation networks exhibit the main characteristics of typical real-world complex networks such as the “small-world” property and an inhomogeneous degree distribution. These results yield valuable insight in order to develop composition search algorithms, to deal with security threat in the composition process and on the phenomena which characterize its evolution.

References (48)

  1. Albert, R., Jeong, H. & Barabasi, A.-L., 1999. The diameter of the world wide web. Nature, 401(September), pp.130-131.
  2. Arpinar, I., Aleman-Meza, B. & Zhang, R., 2005. Ontology-driven web services composition platform. Inf. Syst. E-Business Management, vol. 3.
  3. Azmeh, Z. et al., 2008. WSPAB: A Tool for Automatic Classification & Selection of Web Services Using Formal Concept Analysis. In Sixth European Conference on Web Services. IEEE, pp. 31-40.
  4. Benatallah, B., Dumas, M. & Sheng, Q.Z., 2005. Facilitating the Rapid Development and Scalable Orchestration of Composite Web Services. Distributed and Parallel Databases, 17(1), pp.5-37.
  5. Boccaletti, S. et al., 2006. Complex networks: Structure and dynamics. Physics Reports, 424(4-5), pp.175-308.
  6. Bruno, M. et al., 2005. An Approach to support Web Service Classification and Annotation. In 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service. IEEE, pp. 138-143.
  7. Cherifi, C., Labatut, V. & Santucci, J.-F., 2010a. Benefits of Semantics on Web Service Composition from a Complex Network Perspective. In F. Zavoral, J. Yaghob, & E. El-Qawasmeh, eds. International Conference on Networked Digital Technologies. Prague: Springer, pp. 80-90.
  8. Cherifi, C., Labatut, V. & Santucci, J.-F., 2010b. Web Services Dependency Networks Analysis. In M. G. Nalbant & T. Kara, eds. International Conference of New Media and Interactivity. Istanbul : Marmara University, pp. 115-120.
  9. Cherifi, C., Rivierre, Y. & Santucci, J.-F., 2011. WS-NEXT, a Web Services Network Extractor Toolkit. In International Conference on Information Technology. Amman.
  10. Cherifi, C. & Santucci, J.-F., 2013. Community Structure in Interaction Web Service Networks. To be appeared in Int. J. of Web Based Communities, 9(3).
  11. Costa, L. da F. et al., 2007. Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), pp.167-242.
  12. Couto, F.M. & Silva, M.J., 2011. Disjunctive shared information between ontology concepts: application to Gene Ontology. Journal of biomedical semantics, 2(1), p.5.
  13. Dekar, L. & Kheddouci, H., 2008. A Graph b-Coloring Based Method for Composition- Oriented Web Services Classification. In A. An et al., eds. Springer Berlin Heidelberg, pp. 599-604.
  14. Fan, J. & Kambhampati, S., 2005. A snapshot of public web services. ACM SIGMOD Record, 34(1), p.24.
  15. Farrell, J. & Lausen, H., 2007. Semantic Annotations for WSDL and XML Schema, Available at: http://www.w3.org/TR/sawsdl/.
  16. Fortunato, S., 2010. Community detection in graphs. Physics Reports 486, pp.75-174.
  17. Gekas, J. & Fasli, M., 2007. Employing Graph Network Analysis for Web Service Composition. International Journal of Information Technology and Web Engineering, 2(4 ), p.20.
  18. Guimerà, R. et al., 2003. Self-similar community structure in a network of human interactions. Physical Review E, 68(6).
  19. Hashemian, S.V. & Mavaddat, F., 2005. A Graph-Based Approach to Web Services Composition. In 2005 Symposium on Applications and the Internet. IEEE, pp. 183- 189.
  20. Hau, J. & Lee, W., 2005. A Semantic Similarity Measure for Semantic Web Services. In Web Service Semantics Workshop at WWW.
  21. Hess, A., Johnston, E. & Kushmerick, N., 2004. ASSAM: A tool for semi-automatically annotating semantic web services. In S. A. McIlraith, D. Plexousakis, & F. van Harmelen, eds. International Semantic Web Conference. Hiroshima: Springer.
  22. IEEE International Conference on e-Business Engineering, 2005. ICEBE'05. (2005). Available at: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10403. InfoEther & Technologies, B., 2004. SemWebCentral. Available at: http://wwwprojects.semwebcentral.org/.
  23. Katakis, I. et al., 2009. On the Combination of Textual and Semantic Descriptions for Automated Semantic Web Service Classification. In Artificial Intelligence Applications and Innovations. Boston: Springer, pp. 95-104.
  24. Kil, H. et al., 2009. Graph Theoretic Topological Analysis of Web Service Networks. World Wide Web, 12(3), pp.321-343.
  25. Konduri, A. & Chan, C., 2008. Clustering of Web Services Based on WordNet Semantic Similarity, Akron: University of Akron, USA.
  26. Kwon, J. et al., 2007. PSR : Pre-computing Solutions in RDBMS for Fast Web Services Composition Search. In International Conference on Web Services . Salt Lake City, Utah, USA, pp. 808-815.
  27. Küster, U., König-Ries, B. & Krug, A., 2008. OPOSSum -An Online Portal to Collect and Share SWS Descriptions. In International Conference on Semantic Computing. Santa Clara, California, USA: IEEE, pp. 480-481.
  28. Lausen, H., Polleres, A. & Roman, D., 2005. Web Service Modeling Ontology (WSMO). Available at: http://www.w3.org/Submission/WSMO/.
  29. Liu, J. & Chao, L., 2007. Design and Implementation of an Extended UDDI Registration Center for Web Service Graph. In International Conference on Web Services. Salt Lake City, Utah, USA: IEEE , pp. 1174-1175 .
  30. Martin, D. et al., 2004. OWL-S: Semantic Markup for Web Services, Available at: http://www.w3.org/Submission/OWL-S/.
  31. Medjahed, B. & Bouguettaya, A., 2005. A Dynamic Foundational Architecture for Semantic Web Services. Distributed and Parallel Databases, 17(2), pp.179-206.
  32. Navarro, E. & Cazabet, R., 2011. Détection de communautés, étude comparative sur graphes réels. Information interaction intelligence, 11(1), pp.77-93.
  33. Nayak, R. & Lee, B., 2007. Web Service Discovery with additional Semantics and Clustering. In IEEE/WIC/ACM International Conference on Web Intelligence. Silicon Valley, USA: IEEE, pp. 555-558.
  34. Newman, M., Barabási, A.-L. & Watts, D.J., 2011. The Structure and Dynamics of Networks, Princeton University Press.
  35. Newman, M.E.J., 2004. Detecting community structure in networks. The European Physical Journal B Condensed Matter, 38(2), pp.321-330.
  36. Newman, M.E.J., 2006. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), pp.8577-8582.
  37. Newman, M.E.J., 2003. The Structure and Function of Complex Networks. SIAM Review, 45(2), p.167.
  38. Oldham, N. et al., 2005. METEOR-S Web Service Annotation Framework with Machine Learning Classification. In Lecture Notes in Computer Science : Semantic Web Services and Web Process Composition . pp. 137-146.
  39. Orman, G., Labatut, Vincent & Cherifi, H., 2011. Qualitative Comparison of Community Detection Algorithms. In H. Cherifi, J. M. Zain, & Eyas El-Qawasmeh, eds. Digital Information and Communication Technology and Its Applications. Springer, pp. 265-279.
  40. Paolucci, M. et al., 2002. Semantic Matching of Web Services Capabilities. In The Semantic Web -ISWC 2002 -LNCS. Springer, pp. 333-347.
  41. Pons, P. & Latapy, M., 2005. Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10(2), pp.191-218.
  42. Rada, R. et al., 1989. Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1), pp.17-30.
  43. Resnik, P., 1995. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In Proceedings of the 14th International Joint Conference on Artificial Intelligence. pp. 448-453.
  44. Scott, J., 2000. Social Network Analysis: a Handbook. SAGE.
  45. Shvaiko, P. & Euzénat, J., 2005. A Survey of Schema-Based Matching Approaches S. Spaccapietra, ed. Journal on Data Semantics, IV, pp.146-171.
  46. Taher, Y. et al., 2006. Towards an Approach for Web Services Substitution. In 10th International Database Engineering and Applications Symposium. IEEE, pp. 166- 173.
  47. Talantikite, H., Aissani, D. & Boudjlida, N., 2009. Semantic annotations for web services discovery and composition. Computer Standards Interfaces, 31(6), pp.1108-1117.
  48. Watts, D.J. & Strogatz, S.H., 1998. Collective dynamics of "small-world" networks. Nature, 393(6684), pp.440-2.