Academia.eduAcademia.edu

Outline

Comparing the CENA GMPEs Using NGA-East Ground-Motion Database

Seismological Research Letters

https://doi.org/10.1785/0220140045

Abstract

Online Material: Tables and figures of GMPE parameters, NGA-East database summary statistics, mean residuals, skew-ness and kurtosis, results from log-likelihood analysis, and ranking.

FAQs

sparkles

AI

What are the key differences in GMPE performance across different site classes?add

The study finds that GMPEs such as A08p, AB06p, and AB06+ excel in combined site classes, whereas AB95 outperforms others for rock sites.

How does the EDR method outperform LLH in GMPE ranking?add

The EDR methodology accounts for ground-motion uncertainty and biases, making it superior to LLH that primarily assesses likelihood without these considerations.

What statistical methods confirmed GMPEs' residuals are not normally distributed?add

The application of tests such as Kolmogorov-Smirnov and Lilliefors indicated non-normality in GMPEs’ residual distributions, highlighting positive skewness and leptokurtic tendencies.

Which GMPEs performed best at specific spectral periods according to the analysis?add

At shorter periods, A08p and AB95 performed well for rock sites, while EPRI4 and EPRI2 exhibited superior performance for deep soil sites at 2.0 seconds.

What variations exist in GMPE predictions due to geometrical spreading?add

Newer GMPEs utilize R^-1.3 for geometrical spreading under 70 km, resulting in generally lower ground-motion predictions than older models employing R^-1.0.

References (42)

  1. Abrahamson, N. A., and K. M. Shedlock (1997). Overview, Seismol. Res. Lett. 68, 9-23.
  2. Abrahamson, N. A., and W. J. Silva (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes, Seismol. Res. Lett. 68, no. 1, 94-127.
  3. Al Noman, M. N. (2013). Ground motion modeling for eastern North America: An empirical approach with the NGA-East database, M.S. thesis, University of Memphis, Memphis, Tennessee, 54 pp.
  4. Atkinson,, G., and D. Boore (1995). New ground motion relations for eastern North America, Bull. Seismol. Soc. Am. 85, 17-30.
  5. Atkinson, G., and D. Boore (2006). Earthquake ground motion predic- tion equations for eastern North America, Bull. Seismol. Soc. Am. 96, 2181-2205.
  6. Atkinson, G., and D. Boore (2011). Modifications to existing ground motion prediction equations in light of new data, Bull. Seismol. Soc. Am. 101, 1121-1135.
  7. Atkinson, G. M. (2008). Ground motion prediction equations for eastern North America from a referenced empirical approach: Implications for epistemic uncertainty, Bull. Seismol. Soc. Am. 98, 1304-1318.
  8. Beauval, C., F. Cotton, N. Abrahamson, N. Theodoulidis, E. Delavaud, L. Rodriguez, F. Scherbaum, and A. Haendel (2012). Regional differences in subduction ground motions, Proc. of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24-28 September 2012.
  9. Beauval, C., H. Tasan, A. Laurendeau, E. Delavaud, F. Cotton, Ph. Gué- guen, and N. Kühn (2012). On the testing of ground-motion pre- diction equations against small magnitude data, Bull. Seismol. Soc. Am. 102, no. 5, 1994-2007.
  10. Bindi, D., L. Luzi, F. Pacor, G. Franceschina, and R. R. Castro (2006). Ground-motion predictions from empirical attenuation relation- ships versus recorded data: The case of the 1997-1998 Umbria- Marche, central Italy, strong-motion data set, Bull. Seismol. Soc. Am. 96, no. 3, 984-1002.
  11. Campbell, K. W. (1981). Near source attenuation of peak horizontal ac- celeration, Bull. Seismol. Soc. Am. 71, no. 6, 2039-2070.
  12. Campbell, K. W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground motion (attenuation) relations in eastern North America, Bull. Seis- mol. Soc. Am. 93, 1012-1033.
  13. Cramer, C. H., J. Kutliroff, and D. Dangkua (2009). Second year final report on a database of CEUS ground motions, cooperative agree- ment: 07CRAG0015-Mod1, U.S. Geol. Surv. Final Rept., 22 July 2009, CERI, 12 pp.
  14. Cramer, C. H., J. R. Kutliroff, and D. T. Dangkua (2010). A database of eastern North America ground motions for the Next Generation Attenuation East project, Proc. of the Ninth U.S. National and Tenth Canadian Conference on Earthquake Engineering: Reaching Beyond Borders, Toronto, Ontario, Canada, 26-29 July 2010, Earth- quake Engineering Research Institute and Canadian Association for Earthquake Engineering, 10 pp.
  15. Cramer, C. H., J. R. Kutliroff, D. T. Dangkua, and M. N. Al-Noman (2013). Completing the NGA East ENA/SCR Ground Motion Da- tabase, Final Technical Report to PEER under Sub-agreement 7140, 5 April 2013, CERI, 18 pp.
  16. ▴ Figure 5. Ranking according to EDR technique (overall EDR, i.e., k × MDE). (a) All sites, (b) rock sites, (c) soil sites, and (d) deep soil sites. Ⓔ See also Figures S5-S16.
  17. Douglas, J. (2011). Ground-motion prediction equations 1964-2010, Final Rept. BRGM/RP-59356-FR, 444 pp. and 9 illustrations.
  18. Douglas, J., and P. Gehl (2008). Investigating strong ground-motion vari- ability using analysis of variance and two-way-fit plots, Bull. Earthq. Eng. 6, no. 3, 389-405.
  19. Electric Power Research Institute (EPRI) (2004). CEUS Ground Motion Project, Final Rept., 1009684, Electric Power Research Institute, Palo Alto, California.
  20. Frankel, A., C. Mueller, T. Barnhard, D. Perkins, E. Leyendecker, N. Dickman, S. Hanson, and M. Hopper (1996). National seismic hazard maps: Documentation June 1996, U.S. Geol. Surv. Open-File Rept. 96-532, http://pubs.usgs.gov/of/1996/532/OFR-96-532_508.pdf (last assessed October 2014).
  21. Joshi, A., A. Kumar, C. Lomnitz, H. Castaños, and S. Akhtar (2012). Applicability of attenuation relations for regional studies, Geofísc. Int. 51, no. 4, 349-363.
  22. Joyner, W. B., and D. M. Boore (1981). Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am. 71, no. 6, 2011-2038.
  23. Kaklamanos, J., and L. G. Baise (2011). Model validations and compar- isons of the Next Generation Attenuation of ground motions (NGA-West) project, Bull. Seismol. Soc. Am. 101, no. 1, 160-175.
  24. Kale, Ö., and S. Akkar (2012). A method to determine the appropriate GMPEs for a selected seismic prone region, Proc. of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24-28 September 2012.
  25. Kale, Ö., and S. Akkar (2013). A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): Euclidean distance- based ranking (EDR) method, Bull. Seismol. Soc. Am. 103, no. 2A, 1069-1084.
  26. Kramer, S. (1996). Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, New Jersey.
  27. Mousavi, M., A. Ansari, H. Zafarani, and A. Azarbakht (2012). Selection of ground motion prediction models for seismic hazard analysis in the Zagros region, Iran, J. Earthq. Eng. 16, 1184-1207.
  28. Ogweno, L. P. (2013). Model bias analysis using statistical methods with The NGA East ground motion database, M.S. thesis, University of Memphis, Memphis, Tennessee.
  29. Ornthammarath, T. (2013). A note on the strong ground motion re- corded during the M w 6.8 earthquake in Myanmar on 24 March 2011, Bull. Earthq. Eng. 11, no. 1, 241-254.
  30. Ornthammarath, T., J. Douglas, R. Sigbjörnsson, and C. G. Lai (2011). Assessment of ground motion variability and its effects on seismic hazard analysis: A case study for Iceland, Bull. Earthq. Eng. 9, no. 4, 931-953.
  31. Petersen, M. D., A. D. Frankel, S. C. Harmsen, C. S. Mueller, K. M. Haller, R. L. Wheeler, R. L. Wesson, Y. Zeng, O. S. Boyd, D. M. Perkins, N. Luco, E. H. Field, C. J. Wills, and K. S. Rukstales (2008). Documentation for the 2008 Update of the United States National Seismic Hazard Maps, U.S. Geol. Surv. Open-File Rept. 2008-1128, 61 pp.
  32. Pezeshk, S., A. Zandieh, and B. Tavakoli (2011). Hybrid empirical ground motion prediction equations for eastern North America using NGA models and updated seismological parameters, Bull. Seismol. Soc. Am. 101, no. 4, 1859-1870, doi: 10.1785/0120100144.
  33. Scasserra, G., J. P. Stewart, P. Bazzurro, G. Lanzo, and F. Mollaioli (2009). A Comparison of NGA ground-motion prediction equations to Italian data, Bull. Seismol. Soc. Am. 99, no. 5, 2961-2978.
  34. Scherbaum, F., F. Cotton, and P. Smit (2004). On the use of response spectral-reference data for the selection and ranking of ground- motion models for seismic-hazard analysis in regions of moderate seismicity: The case of rock motion, Bull. Seismol. Soc. Am. 94, no. 6, 2164-2185.
  35. Scherbaum, F., E. Delavaud, and C. Riggelsen (2009). Model selection in seismic hazard analysis: An information-theoretic perspective, Bull. Seismol. Soc. Am. 99, no. 6, 3234-3247.
  36. Shoja-Taheri, J., S. Naserieh, and G. Hadi (2010). A test of the applicabil- ity of NGA models to the strong ground-motion data in the Iranian plateau, J. Earthq. Eng. 14, 278-292.
  37. Silva, W., N. Gregor, and R. Darragh (2002). Development of regional hard rock attenuation relations for central and eastern North America, in Pacific Engineering and Analysis, El Cerrito, California, 57 pp.
  38. Somerville, P., N. Collins, N. Abrahamson, R. Graves, and C. Saikia (2001). Ground motion attenuation relations for central and eastern United States, U.S. Geol. Surv. Final Rept., 30 June 2001, URS Group, Inc., Pasadena, California, 36 pp., http://earthquake .usgs.gov/hazards/products/conterminous/2008/99HQGR0098.pdf (last accessed October 2014)
  39. Tavakoli, B., and S. Pezeshk (2005). Empirical-stochastic ground motion prediction equations for eastern North America, Bull. Seismol. Soc. Am. 95, no. 6, 2283-2296, doi: 10.1785/0120050030.
  40. Toro, G. R. (2002). Modification of the Toro et al., (1997) attenuation equations for large magnitudes and short distances, Risk Engineer- ing, Inc, http://www.ce.memphis.edu/7137/PDFs/attenuations/Toro_2001_ (modification_1997).pdf (last accessed October 2013).
  41. Toro, G. R., N. A. Abrahamson, and J. F. Schneider (1997). A model of strong ground motions from earthquakes in Central and Eastern North America: Best estimates and uncertainties, Seismol. Res. Lett. 68, no. 1, 41-57.
  42. Wald, D. J., and T. I. Allen (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bull. Seismol. Soc. Am. 97, no. 5, 1379-1395.