Academia.eduAcademia.edu

Outline

A Survey on Paracomplex Geometry

Abstract

para-Hermitian geometry, a type of affine symmetric spaces, called para-Hermitian symmetric spaces, arises (see Section 5). These spaces are useful, among other things, in the representation theory of the associated groups. Moreover, those symmetric spaces M are diffeomorphic to (a covering manifold of) the cotangent bundle of another-Riemannian-symmetric space M 0. That permits us to bring into T * (M 0) the para-Kähler structure on M , thus obtaining an additional structure on the cotangent bundle of those manifolds, which is of great interest in symplectic geometry and mechanics. Paracomplex geometry is a topic with many analogies and also with differences with complex geometry. Thus this subject is often studied with the geometries arising from complex numbers, and also with the geometry coming from dual numbers (see for instance [21, 26, 70, 109, 118]). However, for the sake of brevity, we shall make, in this survey, no references to related results on other algebras. On the other hand, a little knowledge of paracomplex geometry shows soon that there are more differences with complex geometry than one can suspect at the beginning. Perhaps, the subject would we worthy to appear in the corresponding section of the A.M.S. Subject Classification. We have entitled the present work "A survey on paracomplex geometry", but it is perhaps premature to definitively name the topic, since there are several different names, each of which having a reasonable sense; and mainly because the growth of the subject can help to fix the most reasonable name. 2 Paracomplex manifolds 2.1 Some definitions and results We shall first recall some general definitions concerning (almost) paracomplex, (almost) para-Hermitian and (almost) para-Kähler manifolds. From now on, all the manifolds and geometric objects are supposed to be C ∞. Definition 2.1 An almost product structure J on a differentiable manifold M is a (1, 1) tensor field J on M such that J 2 = 1. The pair (M, J) is called an almost product manifold. An almost paracomplex manifold is an almost product manifold (M, J) such that the two eigenbundles T + M and T − M associated with the two eigenvalues +1 and −1 of J, respectively, have the same rank. (Note that the dimension of an almost paracomplex manifold is necessarily even.) Equivalently, a splitting of the tangent bundle T M

References (125)

  1. F.S. Ahrarov, Analytical surfaces with constant curvature in the spaces of 0-couples, Izv. Mat. 5 (1978), 127-130 (Russian).
  2. F.S. Ahrarov and A.P. Norden, Intrinsic geometry of analytical sur- faces in the space of non-degenerate 0-couples, Izv. Mat. 8 (1978), 19-30 (Russian).
  3. C. Allamigeon, Espaces homogènes symétriques à groupe semi-simple, C. R. Acad. Sci. Paris Sér. I Math. 243 (1956), 121-123.
  4. F. Amato, CR-sous-variétés co-isotropes inducées dans une C ∞ - variété pseudo-riemannienne neutre, Boll. U.M.I. 4 (1985), 433-440.
  5. W. Ambrose and I.M.Singer, On homogeneous manifolds, Duke Math. J. 25 (1958), 647-669.
  6. G. Arca, Variétés pseudo-riemanniennes structurées par une connex- ion spin-euclidienne et possédant la propiété de Killing, C. R. Acad. Sci. Paris Sér. I Math. 290 (1980), 839-842.
  7. G. Arca, R. Caddeo and R. Rosca, Variétés para-kähleriennes possédant la propriété concirculaire, C. R. Acad. Sci. Paris Sér. I Math. 286 (1978), 1209-1212.
  8. C. Bejan, A classification of the almost parahermitian manifolds, Proc. Conference on Diff. Geom. and Appl., Dubrovnik, 1988, 23-27.
  9. C. Bejan, Almost parahermitian structures on the tangent bundle of an almost paracohermitian manifold, Proc. Fifth Nat. Sem. Finsler and Lagrange spaces, Brasov, 1988, 105-109.
  10. C. Bejan, Structuri hiperbolice pe diverse spatii fibrate, Ph. D. Thesis, Iaşi, 1990.
  11. A. Bejancu and T. Otsuki, General Finsler connections on a Finsler vector bundle, Kodai Math. J. 10 (1987), 143-152.
  12. M. Berger, Les espaces symétriques non compacts, Bull. Soc. Math. France 74 (1957), 85-177.
  13. F. Bien, D-modules and spherical representations, Math. notes, n. 39, Princeton Univ. Press, 1990.
  14. I. Bouzon, Structures presque cohermitiennes, C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 412-415.
  15. É. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264.
  16. S.S. Chern, Einstein hypersurfaces in a Kählerian manifold of constant holomorphic curvature, J. Differential Geom. 1 (1967), 21-31.
  17. W.K. Clifford, A preliminary sketch on biquaternions, Proc. London Math. Soc. 4 (1873), 381-395. Reprinted in: Mathematical papers, Chelsea Publ., New York, 1968, 181-200.
  18. W.K. Clifford, On the theory of screws in a space of constant curvature, id., 402-405.
  19. W.K. Clifford, On the motion of a body in a elliptic space, 1874, id., 378-384.
  20. W.K. Clifford, Further note on biquaternions, id., 385-396.
  21. V. Cruceanu, Connexions compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J. 24 (1974), 126-142.
  22. V. Cruceanu, Certaines structures sur le fibré tangent, Proc. Inst. Math. Iaşi, Ed. Acad. Rom., 1976, 41-49.
  23. V. Cruceanu, Une structure parakählerienne sur le fibré tangent, Ten- sor (N.S.) 39 (1982), 81-84.
  24. V. Cruceanu, Sur certains morphismes des structures géométriques, Rend. Mat. Appl. (7) 6 (1986), 321-332.
  25. V. Cruceanu, Une classe de structures géométriques sur le fibré cotan- gent, Tensor (N. S.) (to appear).
  26. A. Crumeyrolle, Variétés différentiables à coordonnées hypercom- plexes. Application à une géométrisation et à une généralisation de la théorie d'Einstein-Schrödinger, Ann. Fac. Sci. Toulouse (5) 26 (1962), 105-137.
  27. J.E. D'Atri and H.K. Nickerson, The existence of special orthonormal frames, J. Differential Geom. 2 (1968), 393-409.
  28. H. Doi, A classification of certain symmetric Lie algebras, Hiroshima Math. J. 11 (1981), 173-180.
  29. C. Ehresmann, Sur les variétés presque complexes, Act. Proc. Intern. Cong. Math., 1950, 412-419.
  30. M. Flensted-Jensen, Spherical functions on a real semisimple group. A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106-146
  31. M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. (2) 111 (1980), 253-311.
  32. H. Freudenthal, Lie groups in the foundations of geometry, Adv. Math. 1 (1970), 145-190.
  33. A. Fujimoto, Theory of G-structures, Study Group of Geom., 1972.
  34. P.M. Gadea and A. Montesinos Amilibia, Spaces of constant paraholo- morphic sectional curvature, Pacific J. Math. 136 (1989), 85-101.
  35. P.M. Gadea and A. Montesinos Amilibia, The paracomplex projective spaces as symmetric and natural spaces, Indian J. Pure Appl. Math. 23 (1992), 261-275.
  36. P.M. Gadea and A. Montesinos Amilibia, Totally umbilical pseudo- Riemannian submanifolds of the paracomplex projective space, to ap- pear in Czechoslovak Math. J., 1993.
  37. P. M. Gadea and J. Muñoz Masqué, Classification of almost para- Hermitian manifolds, Rend. Mat. Appl. (7) 11 (1991), 377-396.
  38. P.M. Gadea and J. Muñoz Masqué, Classification of homogeneous parakählerian space forms, Nova J. Algebra Geom. 1 (1992), 111-124.
  39. P.M. Gadea and J.A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Hous- ton J. Math. 18 (1992), 449-465.
  40. V.V. Goldberg and R. Rosca, Biconformal vector fields on manifolds endowed with a certain differential conformal structure, Houston J. Math. 14 (1988), 81-95.
  41. J.T. Graves, On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables, Phil. Magaz., London-Edinburgh-Dublin, 26 (1845), 315-320.
  42. A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58.
  43. J. Hilgert, The hyperboloid as ordered symmetric space, Sem. Sophus Lie 1 (1991), 135-142.
  44. J. Hilgert, G. 'Olafsson and B. Ørsted, Hardy spaces associated to sym- metric spaces of Hermitian type, Math. Gottingensis, Heft 29, 1989.
  45. S. Ianuş and R. Rosca, Variétés para-Kähleriennes structurées par une connexion géodesique, C. R. Acad. Sci. Paris Sér. I Math. 280 (1975), 1621-1623.
  46. G. Jensen and M. Rigoli, Neutral surfaces in neutral four-spaces, Matematiche (Catania) 45 (1991), 407-443.
  47. M. Kanai, Geodesic flows of negatively curved manifolds with stable and unstable flows, Ergodic Theory Dynamical Systems 8 (1988), 215- 239.
  48. S. Kaneyuki, On classification of parahermitian symmetric spaces, Tokyo J. Math. 8 (1985), 473-482.
  49. S. Kaneyuki, On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J. Math. 13 (1987), 333-370.
  50. S. Kaneyuki, A decomposition theorem for simple Lie groups associated with parahermitian symmetric spaces, Tokyo J. Math. 10 (1987), 363- 373.
  51. S. Kaneyuki, On a remarkable class of homogeneous symplectic mani- folds, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 128-131.
  52. S. Kaneyuki, Homogeneous symplectic manifolds and dipolarizations in Lie algebras, Tokyo J. Math. 15 (1992), 313-325.
  53. S. Kaneyuki, On the subalgebras g 0 and g ev of semisimple graded Lie algebras, J. Math. Soc. Japan 45 (1993), 1-19.
  54. S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J. 112 (1988), 81-115.
  55. S. Kaneyuki and M. Kozai, Paracomplex structures and affine sym- metric spaces, Tokyo J. Math. 8 (1985), 81-98.
  56. S. Kaneyuki and M. Kozai, On the isotropy group of the automorphism group of a parahermitian symmetric space, Tokyo J. Math. 8 (1985), 483-490.
  57. S. Kaneyuki and F. Williams, On a class of quantizable co-adjoint orbits, Algebras Groups Geom. 2 (1985), 70-94.
  58. S. Kaneyuki and F. Williams, Almost paracontact and parahodge struc- tures on manifolds, Nagoya Math. J. 99 (1985), 173-187.
  59. P.F. Kelly and R.B. Mann, Ghost properties of algebraically extended theories of gravitation, Classical Quantum Gravity, 3 (1986), 705-712.
  60. V.F. Kirichenko, Tangent bundles from the point of view of generalized Hermitian geometry, Izv. Vyssh. Uchebn. Zaved. Mat., Math. 7(266) (1984), 50-58 (Russian); english translation: Soviet Math. (Iz. VUZ) 28 (1984), 63-74.
  61. A. Kirillov, Unitary representations of nilpotent groups, Russian Math. Surveys 17 (1962), 53-104.
  62. A. Koranyi and J.A. Wolf, Realization of Hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265-288.
  63. F. Klein, Vergleichende Betrachtungen über neuere geometrische Vorschungen, A. Deichert, Erlangen, 1872.
  64. S. Kobayashi and T. Nagano, Filtered Lie algebras and geometric structures, I, J. Math. Mech. 13 (1964), 875-908.
  65. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Intersc. Publ., 1963 and 1969.
  66. B. Kostant, Quantization and unitary representations (part I: prequan- tization), Lect. notes in Math., n. 170, Springer-Verlag, 1970, 87-208.
  67. A.P. Kotelnikov, Twist calculus and some of its applications to geom- etry and mechanics, Kazan, 1895 (Russian).
  68. G. Kunstatter and J.W. Moffat, Geometrical interpretation of a gen- eralized theory of gravitation, J. Math. Phys. 24 (1986), 886.
  69. P. Libermann, Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris Sér. I Math. 234 (1952), 2517-2519.
  70. P. Libermann, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl. (4) 36 (1954), 27-120.
  71. R.B. Mann, New ghost-free extensions of General Relativity, Classical Quantum Gravity 6 (1989), 41-57.
  72. G. Markov and M. Prvanović, π-holomorphically planar curves and π-holomorphically projective transformations, Publ. Math. Debrecen, 37 (1990), 273-284.
  73. S. Matsumoto, Discrete series for an affine symmetric space, Hi- roshima Math. J. 11 (1981), 53-79.
  74. O. Mayer, Géométrie biaxiale différentielle des courbes, Bull. Math. Soc. Roum. Sci. 4 (1938), 1-4.
  75. O. Mayer, Biaxiale Differentialgeometrie der Kurven und Regelflëchen, Anal. Sci. Univ. Jassy 27 (1941), 327-410.
  76. O. Mayer, Geometria biaxiala diferentiala a suprafet ¸elor, Lucr. Ses. S ¸ti. Acad. Rep. Pop. Romàne, 1950, 1-7.
  77. R. Miron and G. Atanasiu, Existence et arbitrariété des connexions compatibles à une structure Riemann généralisée du type presque k- horsymplectique métrique, Kodai Math. J. 6 (1983), 228-237.
  78. J.W. Moffat, New theory of gravitation, Phys. Rev. D. 19 (1979), 3554- 3558.
  79. J.W. Moffat, Nonsymmetric gravitation theory and its experimental consequences, Proc. Sir Arthur Eddington cent. Symp., vol. 1, Nagpur, 1984, World Sci. Publ., Singapore, 1984, 197-223.
  80. J.W. Moffat, Review of the nonsymmetric gravitational theory, Sum- mer Inst. on Gravit., Banff Center, Banff, Alberta, Canada, 1990.
  81. G. 'Olafsson, Symmetric spaces of Hermitian type, Differential Geom. Appl. 1 (1991), 195-233.
  82. G. 'Olafsson, Causal symmetric spaces, Math. Gottingensis, Heft 15, 1990.
  83. G. 'Olafsson and B. Ørsted, The holomorphic discrete series for affine symmetric spaces, J. Funct. Anal. 81 (1988), 126-159.
  84. G.I. Ol'shanskii, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Functional Anal. Appl. 15 (1982), 275-285.
  85. Z. Olszak, On conformally flat parakählerian manifolds, Math. Balkan- ica (N.S.) 5 (1991), 302-307.
  86. V. Oproiu, A pseudo-Riemannian structure in Lagrange geometry, An. S ¸tiint ¸. Univ. "Al. I. Cuza" Iaşi Sect ¸. I a Mat. 33 (1987), 239-254.
  87. T. Oshima and T. Matsuki, A description of discrete series for semi- simple symmetric spaces: Group representations and systems of Dif- ferential Equations, Adv. Stud. Pure Math. 4 (1984), 331-390, Ki- nokuniya, Tokyo and North-Holland, Amsterdam.
  88. R.B. Pal and R.S. Mishra, Hypersurfaces of almost hyperbolic Hermite manifolds, Indian J. Pure Appl. Math. 11 (1980), 628-632.
  89. D. Papuc, Sur les variétés des espaces kleinéens à groupe linéaire complétement reductible, C. R. Acad. Sci. Paris Sér. I Math. 256 (1963), (1) 62-64; (3) 589-591.
  90. E.M. Patterson, Riemann extensions which have Kähler metrics, Proc. Roy. Soc. Edinburgh Sect. A 64 (1954), 113-126.
  91. E.M. Patterson, Symmetric Kähler spaces, J. London Math. Soc. 30 (1955), 286-291.
  92. E.M. Patterson, A characterization of Kähler manifolds in terms of parallel fields of planes, J. London Math. Soc. 28 (1958), 260-269.
  93. M. Prvanović, Holomorphically projective transformations in a locally product space, Math. Balkanica 1 (1971), 195-213.
  94. P.K. Rashevskij, The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 225-248.
  95. R. Rosca, Variétés pseudo-riemanniennes V n,n de signature (n, n) et á connexion self-orthogonale involutive, C. R. Acad. Sci. Paris Sér. I Math. 280 (1974), 959-961.
  96. R. Rosca, Quantic manifolds with para-co-Kählerian structures, Kodai Math. Sem. Rep. 27 (1976), 51-61.
  97. R. Rosca, Para-Kählerian manifolds carrying a pair of concurrent self- orthogonal vector fields, Abh. Math. Sem. Univ. Hamburg 46 (1977), 205-215.
  98. R. Rosca, Espace-temps possédant la propriété géodésique, C. R. Acad. Sci. Paris Sér. I Math. 285 (1977), 305-308.
  99. R. Rosca, Sous-variétés anti-invariantes d'une variété parakählerienne structurée par une connexion géodesique, C. R. Acad. Sci. Paris Sér. I Math. 287 (1978), 539-541.
  100. R. Rosca, CR-hypersurfaces à champ normal covariant décomposable incluses dans une variété pseudo-riemannienne neutre, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 287-290.
  101. R.Rosca, CR-sous-variétés co-isotropes d'une variété parakählerienne, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 149-151.
  102. R. Rosca, Variétés neutres M admettant une structure conforme sym- plectique et feuilletage coisotrope, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 631-634.
  103. R. Rosca and L. Vanhecke, Les sous-variétés isotropes et pseudo- isotropes d'une variété hyperbolique à n dimensions, Verh. Konink. Acad. Wetensch. België, 38 (1976), n. 136.
  104. W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), 157-180.
  105. B.A. Rozenfeld, History of non-Euclidean geometries, Springer-Verlag, 1988.
  106. B.A. Rozenfeld, On unitary and stratified spaces, Trudy Sem. Vektor. Tenzor. Anal. 7 (1949), 260-275 (Russian).
  107. B.A. Rozenfeld, Projective geometry as metric geometry, Trudy Sem. Vektor. Tenzor. Anal. 8 (1950), 328-354 (Russian).
  108. B.A. Rozenfeld, Non-Euclidean geometries over the complex and the hypercomplex numbers and their application to real geometries, in "125 years of Lobatchevski non-Euclidean geometry", Moskow-Leningrad, 1952, 151-156.
  109. B.A. Rozenfeld, Non-Euclidean geometries, Gosudarstv. Izdat. Tehn.- Teor. Lit., Moskow, 1955, 744 pp. (Russian).
  110. B.A. Rozenfeld, N.V. Dushina and I.N. Semenova, Differential geome- try of real 2-surfaces in dual Hermitian Euclidean and elliptic spaces, Trudy Geom. Sem. Kazan. Univ. 19 (1989), 107-120 (Russian).
  111. H.S. Ruse, On parallel fields of planes in a Riemannian manifold, Quart. J. Math. Oxford Ser. (2) 20 (1949), 218-234.
  112. N. Salingaros, Algebras with three anticommuting elements. (II) Two algebras over a singular field, J. Math. Phys. 22 (1981), 2096-2100.
  113. A.P. Shirokov, On the problem of A-spaces, in "125 years of Lo- batchevski non-Euclidean Geometry", Moskow-Leningrad, 1952, 195- 200 (Russian).
  114. E. Study, The geometry of dynames, Leipzig, 1903.
  115. M. Takeuchi, Cell decompositions and Morse equalities on certain sym- metric spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 12 (1965), 81-191.
  116. M. Takeuchi, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J. 36 (1984), 293-314.
  117. I. Vaisman, On locally conformal almost Kähler manifolds, Israel J. Math. 24 (1976), 338-351.
  118. V.V. Vyshnevskij, A.P. Shirokov and V.V. Shurygin, Spaces over al- gebras, Kazan Univ., 1985 (Russian).
  119. J.A. Wolf, Spaces of constant curvature, Publish or Perish, 1977.
  120. Y.C. Wong, Fields of parallel planes in affinely connected spaces, Quart. J. Math. Oxford Ser. (2) 4 (1953), 241-253.
  121. I.M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer-Verlag, 1979.
  122. K. Yano and S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, 1973.
  123. Z.-Z. Zhong, On the hyperbolic complex linear symmetry groups and their local gauge transformation actions, J. Math. Phys. 26 (1985), 404-406.
  124. Author's addresses V. Cruceanu: Faculty of Mathematics, University "Al. I. Cuza", 6600- Iaşi, Romania.
  125. P. Fortuny: Department of Pure and Applied Mathematics, Faculty of Sciences, Pl. de la Merced 1-4, 37008-Salamanca, Spain. P.M. Gadea: Institute of Mathematics and Fundamental Physics, CSIC, Serrano 123, 28006-Madrid, Spain.