Academia.eduAcademia.edu

Outline

Particles in fluids

2007, The European Physical Journal Special Topics

https://doi.org/10.1140/EPJST/E2007-00086-X

Abstract

For finite Reynolds numbers the interaction of moving fluids with particles is still only understood phenomenologically. We will present three different numerical studies all using the solver "Fluent" which elucidate this issue from different points of view. On one hand we will consider the case of fixed particles, i.e. a porous medium and present the distribution of channel openings and fluxes. These distributions show a scaling law in the density of particles and for the fluxes follow an unexpected stretched exponential behaviour. The next issue will be filtering, i.e. the release of massive tracer particles within this fluid. Interestingly a critical Stokes number below which no particles are captured and which is characterized by a critical exponent of 1/2. Finally we will also show data on saltation, i.e. the motion of particles on a surface which dragged by the fluid performs jumps. This is the classical aeolian transport mechanism responsible for dune formation. The empirical relations between flux and wind velocity are reproduced.

References (44)

  1. S.L. Soo, Particles and Continuum: Multiphase Fluid Dy- namics (Hemisphere, New York, 1989).
  2. D. Gidaspow, Multiphase Flow and Fluidization (Academic Press, San Diego, 1994).
  3. K. Pye and H. Tsoar, Aeolian sand and sand dunes (Unwin Hyman, London, 1990).
  4. F. A. L. Dullien, Porous Media -Fluid Transport and Pore Structure (Academic, New York, 1979).
  5. P. M. Adler, Porous Media: Geometry and Transport (Butterworth-Heinemann, Stoneham MA, 1992).
  6. M. Sahimi, Flow and Transport in Porous Media and Frac- tured Rock (VCH, Boston, 1995).
  7. FLUENT (trademark of FLUENT Inc.) is a commercial package for computational fluid dynamics.
  8. S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan and T. A. Witten, Phys. Rev. E 53, (1996) 4673.
  9. A. Canceliere, C. Chang, E. Foti, D. H. Rothman, and S. Succi, Phys. Fluids A 2, (1990) 2085.
  10. S. Kostek, L. M. Schwartz, and D. L. Johnson, Phys. Rev. B 45, (1992) 186.
  11. N. S. Martys, S. Torquato, and D. P. Bentz, Phys. Rev. E 50, (1994) 403.
  12. J. S. Andrade Jr., D. A. Street, T. Shinohara, Y. Shibusa, and Y. Arai, Phys. Rev. E. 51, (1995) 5725.
  13. A. Koponen, M. Kataja, and J. Timonen, Phys. Rev. E 56, (1997) 3319.
  14. S. Rojas and J. Koplik, Phys. Rev E 58, (1998) 4776.
  15. J. S. Andrade Jr., U. M. S. Costa, M. P. Almeida, H. A. Makse, and H. E. Stanley, Phys. Rev. Lett. 82, (1999) 5249.
  16. A.D. Araújo, W.B. Bastos, J.S. Andrade Jr. and H.J. Her- rmann, accepted for Phys. Rev. E, physics/0511085
  17. H. Marshall, M. Sahraoui and M. Kaviany, Phys. Fluids 6, 507 (1993).
  18. S. Torquato, Random Heterogeneous Materials: Mi- crostructure and Macroscopic Properties (Springer, New York, 2002).
  19. G. V. Voronoi, J. reine angew. Math. 134, (1908) 198.
  20. D. F. Watson, The Computer Journal 24, (1981) 167.
  21. C. Tien, Granular Filtration of Aerosols and Hydrosols (Butterworths, Boston, 1989).
  22. C. Ghidaglia, L. de Arcangelis, J. Hinch and E. Guazzelli, Phys. Rev. E 53, R3028 (1996); Phys. Fluids 8, (1996) 6.
  23. J. Lee and J. Koplik, Phys. Fluids 13, (2001) 1076.
  24. D. L. Koch and R. J. Hill, Annu. Rev. Fluid Mech. 33, (2001) 619.
  25. D. E. Rosner and P. Tandon, Chemical Engineering Sci- ence 50, (1995) 3409.
  26. A.D. Araújo, J.S. Andrade Jr. and H.J. Herrmann, preprint
  27. H. Marshall, M. Sahraoui and M. Kaviany, Phys. Fluids 6, (1993) 507.
  28. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).
  29. R. S. Anderson, M. Sørensen and B. B. Willetts, Acta Mech. (Suppl.) 1, 1 (1991).
  30. H. J. Herrmann, in The Physics of Granular Media, eds. H. Hinrichsen and D. Wolf (Wiley VCH, Weinheim, 2004), p. 233-252.
  31. R. A. Bagnold, Proc. R. Soc. Lond A 167, (1938) 282.
  32. K. Lettau and H. Lettau, in Exploring the World's Driest Climate, eds. H. Lettau and K. Lettau, Center for Climatic Research (Univ. of Wisconsin, Madison, 1978).
  33. P. R. Owen, J. Fluid Mech. 20, (1964) 225.
  34. M. Sørensen, in Proc. Int. Wkshp. Physics of Blown Sand, Vol.1 (Univ. of Aarhus, Denmark, 1985), p. 141; Acta Mech. (Suppl.) 1, (1991) 67.
  35. B. R. White, Geophys. Res. 84, (1979) 4643.
  36. G. R. Butterfield, in Turbulence: Perspectives on Flow and Sediment Transport, eds. N. J. Cliffod, J. R. French and J. Hardisty, Chapter 13 (John Wiley, 1993), p.305.
  37. K. Nishimura and J. C. R. Hunt, J. Fluid. Mech. 417, (2000) 77.
  38. J. E. Ungar and P. K. Haff, Sedimentology 34, (1987) 289.
  39. B. Andreotti, J. Fluid Mech. 510, (2004) 47.
  40. P. Nalpanis, J. C. R. Hunt and C. F. Barrett, J. Fluid Mech. 251, (1993) 661-685.
  41. M. P. Almeida, J. S. Andrade Jr. and H. J. Herrmann, Phys. Rev. Lett. 96, (2006) 018001.
  42. L. Prandtl, in Aerodynamic Theory, ed. W. F. Durand, Vol. III (Springer, Berlin, 1935), p.34.
  43. R. S. Anderson and P. K. Haff, Science 241, (1988) 820.
  44. F. Rioual, A. Valance and D. Bideau, Phys. Rev. E 62, (2000) 2450-2459.