A Dynamic Programming Solution to the n-Queens Problem
1992, Information Processing Letters
https://doi.org/10.1016/0020-0190(92)90168-UAbstract
Rivin, I. and R. Zabih, A dynamic programming solution to the n-queens problem, Information Processing Letters 41 (1992) 253-256.
FAQs
AI
What does dynamic programming reveal about solving the n-Queens problem?
The paper reveals that dynamic programming can compute Q(n) in O(f(n)2^n) time, improving upon brute-force methods.
How does the toroidal n-Queens problem differ from the regular version?
In the toroidal n-Queens problem, lines wrap around the chessboard, resulting in T(n) < Q(n).
What is the significance of the equivalence class in this algorithm?
The algorithm utilizes equivalence classes of candidates based on closed lines to streamline the solution process.
How does exhausting lines improve algorithm efficiency?
Exhausting lines allows the algorithm to discard irrelevant candidates, thus reducing the size of the QUEUE substantially.
What are the space and time complexities of this algorithm?
The algorithm requires O(n^2 2^n) space and runs in O(f(n)2^n) time, where f(n) is a low-order polynomial.
References (9)
- W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1 (Teubner, Leipzig, 19211 211-284.
- Berliner Schachgesellschaft, 1848, Vol. 3, p. 363.
- C.F. Gauss, Letter to H.C. Schumacher, September 12, 1850; in: We&e, Vol. 12, commissioned by Julius Springer, Berlin, 1929, pp. 20-21.
- R.M. Haralick and G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, Artificial Intelligence 14 (1980) 263-313.
- E. Lucas, R&x&ions Math&matiques, "Les car& ma- giques", 1891, Vol. 1, Note III, p. 41.
- F. Nauck, Illustrierten Zeitung 14 (1890) 352.
- G. Polya, ober die "doppelt-periodischen" Losungen des n-Damenproblems, in: Collected Works, Vol. 5, pp. 237- 247; originally in: W. Ahrens, Mathematische Unterhaltung und Spiele, Zweiter Band (Teubner, Leipzig, 19181 363- 374.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Preprint, 1990.
- I. Rivin and R. Zabih, An algebraic approach to constraint satisfaction problems, in: Proc. Internat. Joint Conf: on Artificial Intelligence (IJCAI-891, Detroit, MI, 1989.