Academia.eduAcademia.edu

Outline

Flow boundary conditions from nano-to micro-scales

2007, Soft Matter

Abstract
sparkles

AI

The review focuses on the theoretical understanding of fluid-solid boundary conditions, particularly in the context of slippage at solid-fluid interfaces. It discusses the implications of boundary conditions in microfluidics, including the transition from traditional no-slip conditions to potential slippage facilitated by structured surfaces like superhydrophobic materials. The article elaborates on momentum transfer and proposes a framework for analyzing diffusion across interfaces, emphasizing the need for microscopic justifications similarly applied to bulk properties.

References (63)

  1. E. Lauga, M. P. Brenner, and H. A. Stone, in Hand- book of Experimental Fluid Dynamics, edited by C. T. J. Foss and A. Yarin (Springer, 2005), chap. 15, to ap- pear, cond-mat/0501557.
  2. L. Bocquet and J.-L. Barrat, Phys. Rev. E 49, 3079 (1994).
  3. D. Y. C. Chan and R. G. Horn, J. Chem. Phys. 83, 5311 (1985).
  4. J.-M. Georges, S. Millot, J.-L. Loubet, and A. Tonck, J. Chem. Phys. 98, 7345 (1993).
  5. R. Pit, H. Hervet, and L. Léger, Phys. Rev. Lett. 85, 980 (2000).
  6. C. Cottin-Bizonne, C. Barentin, E. Charlaix, L. Bocquet, and J.-L. Barrat, Eur. Phys. J. E 15, 427 (2004).
  7. C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, Phys. Rev. Lett. 94, 056102 (2005).
  8. P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).
  9. J.-L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).
  10. M. Cieplak, J. Koplik, and J. R. Banavar, Phys. Rev. Lett. 86, 803 (2001).
  11. Y. Zhu and S. Granick, Phys. Rev. Lett. 87, 096105 (2001).
  12. N. V. Priezjev and S. M. Troian, Phys. Rev. Lett. 92, 018302 (2004).
  13. A. Jabbarzadeh, P. Harrowell, and R. I. Tanner, J. Chem. Phys. 125 (2006).
  14. P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).
  15. P. A. Thompson, G. S. Grest, and M. O. Robbins, Phys. Rev. Lett. 68, 3448 (1992).
  16. E. D. Smith, M. O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996).
  17. P.-G. de Gennes, Comptes rendus de l'Acadmie des Sci- ences 288, 219 (1979).
  18. L. Leger, H. Hervet, G. Massey, and et al., Journal Of Physics-condensed Matter 9, 7719 (1997).
  19. R. Fetzer, M. Rauscher, A. Munch, and et al., Euro- physics Letters 75, 638 (2006).
  20. F. Brochardwyart, P. G. Degennes, H. Hervert, and et al., Langmuir 10, 1566 (1994).
  21. L. Joly, C. Ybert, L. Bocquet, and E. Trizac, Houille Blanche-revue Internationale De L Eau pp. 53-58 (2006).
  22. L. Joly, C. Ybert, and L. Bocquet, J. Chem. Phys in press (2006).
  23. C. Neto, D. R. Evans, E. Bonaccurso, H. J. Butt, and V. S. J. Craig, Reports On Progress In Phys. 68, 2859 (2005).
  24. E. Bonaccurso, H.-J. Butt, and V. S. J. Craig, Phys. Rev. Lett. 90, 144501 (2003).
  25. O. I. Vinogradova and G. E. Yakubov, Langmuir 19, 1227 (2003).
  26. P.-G. de Gennes, Langmuir 18, 3413 (2002).
  27. A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and et al., Analytical Chemistry 74, 5306 (2002).
  28. S. Richardson, J. Fluid Mech. 59, 707 (1973).
  29. C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, Nature Mat. 2, 237 (2003).
  30. D. Quere, Reports On Progress In Phys. 68, 2495 (2005).
  31. J. R. Philip, Z. Angew. Math. Phys. 23, 960 (1972).
  32. E. Lauga and H. A. Stone, J. Fluid Mech. 489, 55 (2003).
  33. C. Cottin-Bizonne, C. Barentin, E. Charlaix, L. Bocquet, and J. L. Barrat, European Phys. J. E 15, 427 (2004).
  34. C. Cottin-Bizonne, S. Jurine, J. Baudry, J. Crassous, F. Restagno, and E. Charlaix, Houille Blanche-revue In- ternationale De L Eau pp. 116-119 (2003).
  35. N. Priezjev, A. Darhuber, and S. Troian, Phys. Rev. Lett. 71, 041608 (2005).
  36. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, and F. Toschi, Mathematics Computers In Simulation 72, 84 (2006).
  37. J. Harting, C. Kunert, and H. J. Herrmann, Europhysics Lett. 75, 328 (2006).
  38. C. Ybert, C. Barentin, C. Cottin-Bizonne, and L. Boc- quet, submitted to Physics of Fluids (2007).
  39. J. Ou, B. Perot, and J. P. Rothstein, Phys. Fluids 16, 4635 (2004).
  40. J. Ou and J. P. Rothstein, Phys. Fluids 17 (2005).
  41. C. H. Choi, U. Ulmanella, J. Kim, C. M. Ho, and C. J. Kim, Phys. Fluids 18 (2006).
  42. C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96 (2006).
  43. M. Callies and D. Quere, Soft Matter 1, 55 (2005).
  44. R. Truesdell, A. Mammoli, P. Vorobieff, and et al., Phys- ical Review Letters 97, 044504 (2006).
  45. L. Bocquet, P. Tabeling, and S. Manneville, Physical Re- view Letters 97, 109601 (2006).
  46. P. Joseph, C. Cottin-Bizonne, C. Y. J.-M. Beno ît, C. Journet, P. Tabeling, and L. Bocquet, Phys. Rev. Lett. 97, 156104 (2006).
  47. D. D. Joseph, Journal Of Applied Mechanics 33, 753 (1966).
  48. G. S. Beavers, Journal Of Fluid Mechanics 30, 197 (1967).
  49. B. Goyeau, D. Lhuillier, D. Gobin, and et al., Inter- national Journal Of Heat And Mass Transfer 46, 4071 (2003).
  50. J. L. Barrat and F. Chiaruttini, Molecular Physics 101, 1605 (2003).
  51. E. T. Swartz and R. O. Pohl, Reviews Of Modern Physics 61, 605 (1989).
  52. L. Puech, G. Bonfait, and B. Castaing, Journal Of Low Temperature Physics 62, 315 (1986).
  53. H. A. Patel, S. Garde, and P. Keblinski, Nano Letters 5, 2225 (2005).
  54. M. Vladkov and J. L. Barrat, Nano Letters 6, 1224 (2006).
  55. O. M. Wilson, X. Y. Hu, D. G. Cahill, and et al., Physical Review B 66, 224301 (2002).
  56. Z. B. Ge, D. G. Cahill, and P. V. Braun, Physical Review Letters 96, 186101 (2006).
  57. L. Joly, C. Ybert, E. Trizac, and L. Bocquet, Phys. Rev. Lett. 93 (2004).
  58. A. Ajdari and L. Bocquet, Phys. Rev. Lett. 96 (2006).
  59. H. Stone, A. Stroock, and A. Ajdari, Ann. Rev. Flu. Mech. 36, 381 (2004).
  60. R. J. Hunter, Foundations of colloid science (Oxford Univ. Press, Oxford, 2001), 2nd ed.
  61. J. L. Anderson, Annual Review Of Fluid Mechanics 21, 61 (1989).
  62. A matrix generalization of 4 is easily obtained for anisotropic surfaces.
  63. A factor 1 + 8b/h is found for a cylindrical channel