Academia.eduAcademia.edu

Outline

On the Unification of Process Semantics: Logical Semantics

2011, Electronic Proceedings in Theoretical Computer Science

https://doi.org/10.4204/EPTCS.62.4

Abstract

We continue with the task of obtaining a unifying view of process semantics by considering in this case the logical characterization of the semantics. We start by considering the classic linear timebranching time spectrum developed by R.J. van Glabbeek. He provided a logical characterization of most of the semantics in his spectrum but, without following a unique pattern. In this paper, we present a uniform logical characterization of all the semantics in the enlarged spectrum. The common structure of the formulas that constitute all the corresponding logics gives us a much clearer picture of the spectrum, clarifying the relations between the different semantics, and allows us to develop generic proofs of some general properties of the semantics.

References (11)

  1. P. Baldan & S. Crafa (2010): A Logic for True Concurrency. In: CONCUR 2010, LNCS 6269, Springer, pp. 147-161, doi:10.1007/978-3-642-15375-4 11.
  2. D. de Frutos, C. Gregorio & M. Palomino (2009): On the unification of process semantics: equational semantics. ENTCS 249, pp. 243-267, doi:10.1016/j.entcs.2009.07.093.
  3. D. de Frutos, C. Gregorio & M. Palomino (2009): On the unification of process semantics: observational semantics. In: SOFSEM 2009, LNCS 5404, Springer, pp. 279-290, doi:10.1007/978-3-540-95891-8 27.
  4. D. de Frutos-Escrig & C. Gregorio-Rodríguez (2008): Universal Coinductive Characterisations of Process Semantics. In: IFIP TCS 2008, pp. 397-412, doi:10.1007/978-0-387-09680-3 27.
  5. R. J. van Glabbeek (1993): The Linear Time -Branching Time Spectrum II. In: CONCUR 1993, LNCS 715, Springer, pp. 66-81, doi:10.1007/3-540-57208-2 6.
  6. R.J. van Glabbeek (2001): The linear time-branching time spectrum I: the semantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse & S.A. Smolka, eds.: Handbook of Process Algebra, Elsevier, pp. 3-99.
  7. J. Gutierrez (2009): Logics and Bisimulation Games for Concurrency, Causality and Conflict. In: FOSSACS 2009, LNCS 5504, Springer, pp. 48-62, doi:10.1007/978-3-642-00596-1 5.
  8. M. Hennessy & R. Milner (1985): Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32, pp. 137-161, doi:10.1145/2455.2460.
  9. G. Lüttgen & W. Vogler (2009): Safe Reasoning with Logic LTS. In: SOFSEM 2009, LNCS 5404, Springer, pp. 376-387, doi:10.1007/978-3-540-95891-8 35.
  10. G. Lüttgen & W. Vogler (2010): Ready simulation for concurrency: It's logical! Inf. Comput. 208(7), pp. 845-867, doi:10.1016/j.ic.2010.02.001.
  11. A. W. Roscoe (2009): Revivals, stuckness and the hierarchy of CSP models. J. Log. Algebr. Program. 78(3), pp. 163-190, doi:10.1016/j.jlap.2008.10.002.