Self-organizing Complex Networks: individual versus global rules
2017, Frontiers in physiology
https://doi.org/10.3389/FPHYS.2017.00478Abstract
We introduce a form of Self-Organized Criticality (SOC) inspired by the new generation of evolutionary game theory, which ranges from physiology to sociology. The single individuals are the nodes of a composite network, equivalent to two interacting subnetworks, one leading to strategy choices made by the individuals under the influence of the choices of their nearest neighbors and the other measuring the Prisoner's Dilemma Game payoffs of these choices. The interaction between the two networks is established by making the imitation strength K increase or decrease according to whether the last two payoffs increase or decrease upon increasing or decreasing K. Although each of these imitation strengths is selected selfishly, and independently of the others as well, the social system spontaneously evolves toward the state of cooperation. Criticality is signaled by temporal complexity, namely the occurrence of non-Poisson renewal events, the time intervals between two consecutive cr...
References (36)
- Aquino, G., Bologna, M., Grigolini, P., and West, B. J. (2010). Beyond the death of linear response: 1/f optimal information transport. Phys. Rev. Lett. 105:040601. doi: 10.1103/PhysRevLett.105.040601
- Archetti, M., and Scheuring, I. (2016). Evolution of optimal Hill coefficients in nonlinear public goods games. J. Theor. Biol. 406:73. doi: 10.1016/j.jtbi.2016.06.030
- Axelrod, R. (2006). The Evolution of Cooperation. Revised Edn. New York, NY: Basic Books.
- Axelrod, R., and Hamilton, W. D. (1981). The Evolution of Cooperation. Science 211:1390. doi: 10.1126/science.7466396
- Bak, P., and Chen, K. (1989). The physics of fractals. Phys. D 38:5. doi: 10.1016/0167-2789(89)90166-8
- Beig, M. T., Svenkeson, A., Bologna, M., West, B. J., and Grigolini, P. (2015). Critical slowing down in networks generating temporal complexity. Phys. Rev. E. 91:012907. doi: 10.1103/PhysRevE.91.012907
- Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., et al. (2012). Manifesto of computational social science. Eur. Phys. J. Special Topic. 214:325. doi: 10.1140/epjst/e2012-01697-8
- Failla, R., Ignaccolo, M., Grigolini, P., and Schwettmann, A. (2004). Random growth of interfaces as a subordinated process. Phys. Rev. E. 70:010101. doi: 10.1103/PhysRevE.70.010101
- Gintis, H. (2014). The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton, NJ: Princeton University Press.
- Grigolini, P., Piccinini,N., Svenkeson, A., Pramukkul, P., Lambert, D., and West, B. J. (2015) From neural and social cooperation to the global emergence of cognition. Front. Bioeng. Biotechnol. 3:78. doi: 10.3389/fbioe.2015.00078
- Hauser, O. P., Rand, D. G., Peysakhovich, A., and Nowak, M. A. (2014). Cooperating with the future. Nature 511, 220-223. doi: 10.1038/nature 13530
- Hauert, C., and Schuster, H. G. (1997). Effects of increasing the number of players and memory size in the iterated Prisoner's Dilemma: a numerical approach. Proc. Biol. Sci. 264:513 doi: 10.1098/rspb.1997.0073
- Helbing, D. (2017). The Dream of Controlling the World-and Why it Often Fails. Working Paper•
- Helbing, D., and Pournaras, E. (2015). Society: build digital democracy. Nature 527:7576. doi: 10.1038/527033a
- Hesse, J., and Gross, T. (2014). Self-organized criticality as a fundamental property of neural systems. Front. Sys. Neurosci. 8:166. doi 10.3389/fnsys.2014.00166
- Lipiello, E., De Arcangelis, L., and Godano, C. (2005). Memory in self-organized criticality. Europhys. Lett. 72:678. doi: 10.1209/epl/i2005-10292-x
- Kim, J. M., Bray, A. J., and Moore, M. A.(1992). Domain growth, directed polymers, and self-organized criticality. Phys. Rev. A. 45:8546.
- Lukovic, M., and Grigolini, P. (2008). Power spectra for both interrupted and perennial aging processes. J. Chem. Phys. 129:184102. doi: 10.1063/1.30 06051
- Luković, M., Vanni, F., Svenkeson, A., and Grigolini, P. (2014). Transmission of information at criticality. Phys. A 416:430. doi: 10.1016/j.physa.2014.08.066
- Mafahim, J. U., Lambert, D., Zare, M., and Grigolini, P. (2015). Complexity matching in neural networks. New J. Phys. 17:015003. doi: 10.1088/1367-2630/17/1/015003
- Mahmoodi, K., and Grigolini, P. (2017). Evolutionary game theory and criticality. J. Phys. A Math. Theor. 50:015101. doi: 10.1088/1751-8113/50/1/015101
- Martinello, M., Hidalgo, J., di Santo, S., Maritan, A., Plenz, D., and Muñoz, M. A. (2017). Neutral theory and scale-free neural dynamics. arXiv:1703.05079 [q-bio.NC]
- Nosenzo, D., Quercia, S., and Sefton, M. (2015). Cooperation in small groups: the effect of group size. Exp. Econ. 18:4. doi: 10.1007/s10683-013-9382-8
- Nowak, M. A., and May, R. M. (1992). Evolutionary games and spatial chaos. Nature 359:826. doi: 10.1038/359826a0
- Piccinini, N., Lambert, D., West, B. J., Bologna, M., and Grigolini, P. (2016). Non ergodic complexity management. Phys. Rev. E. 93:062301. doi: 10.1103/PhysRevE.93.062301
- Rand, D. G. (2016) Cooperation, fast and slow: meta-analytic evidence for a theory of social heuristics and self-interested deliberation. Psychol. Sci. 1:15. doi: 10.1177/0956797616654455
- Rosenfeld, S. (2013). Global consensus Theorem and self-Organized criticality: Unifying principles for Understanding self-Organization, swarm Intelligence and Mechanisms of carcinogenesis. Gene Regul. Sys. Biol. 7:23. doi: 10.4137/GRSB.S10885
- Stewart, A., and Plotkin, J. B. (2016). Small groups and long memories promote cooperation. Sci. Report 6:26889. doi: 10.1038/srep26889
- Turalska, M., West, B. J., and Grigolini, P. (2011). Temporal complexity of the order parameter at the phase transition. Phys. Rev. E. 83:061142. doi: 10.1038/srep01371
- Vanni, F., Luković, M., and Grigolini, P. (2011). Criticality and Transmission of Information in a Swarm of Cooperative Units. Phys. Rev. Lett. 107:078103. doi: 10.1103/PhysRevLett.107.078103
- Vilone, D., Ramasco, J. J., Sánchez, A., and San Miguel, M. (2012). Social and strategic imitation: the way to consensus. Sci. Rep. 2:686. doi: 10.1038/srep00686
- Vilone, D., Ramasco, J. J., Sánchez, A., and San Miguel, M. (2014). Social imitation versus strategic choice, or consensus versus cooperation, in the networked Prisoner's Dilemma. Phys. Rev. E. 90:022810. doi: 10.1103/PhysRevE.90.022810
- Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., and Jensen, H. J. (2016). 25 Years of self-organized criticality: concepts and controversies . Space Sci. Rev. 198, 3-44. doi: 10.1007/s11214-015-0155-x
- West, B. J., Turalska, M., and Grigolini, P. (2014). Networks of Echoes: Imitation, Innovation and Invisible Leaders. New York, NY: Springer International.
- Zare, M., and Grigolini, P. (2013). Citicality and avalanches in neural networks. Chaos Solitons Fractals 55:80. doi: 10.1016/j.chaos.2013.05.009
- Zapperi, S., Lauritsen, K. B., and Stanley, H. E. (1995). Self-Organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75:4071. doi: 10.1103/PhysRevLett.75.4071