Academia.eduAcademia.edu

Outline

Self-organizing Complex Networks: individual versus global rules

2017, Frontiers in physiology

https://doi.org/10.3389/FPHYS.2017.00478

Abstract

We introduce a form of Self-Organized Criticality (SOC) inspired by the new generation of evolutionary game theory, which ranges from physiology to sociology. The single individuals are the nodes of a composite network, equivalent to two interacting subnetworks, one leading to strategy choices made by the individuals under the influence of the choices of their nearest neighbors and the other measuring the Prisoner's Dilemma Game payoffs of these choices. The interaction between the two networks is established by making the imitation strength K increase or decrease according to whether the last two payoffs increase or decrease upon increasing or decreasing K. Although each of these imitation strengths is selected selfishly, and independently of the others as well, the social system spontaneously evolves toward the state of cooperation. Criticality is signaled by temporal complexity, namely the occurrence of non-Poisson renewal events, the time intervals between two consecutive cr...

References (36)

  1. Aquino, G., Bologna, M., Grigolini, P., and West, B. J. (2010). Beyond the death of linear response: 1/f optimal information transport. Phys. Rev. Lett. 105:040601. doi: 10.1103/PhysRevLett.105.040601
  2. Archetti, M., and Scheuring, I. (2016). Evolution of optimal Hill coefficients in nonlinear public goods games. J. Theor. Biol. 406:73. doi: 10.1016/j.jtbi.2016.06.030
  3. Axelrod, R. (2006). The Evolution of Cooperation. Revised Edn. New York, NY: Basic Books.
  4. Axelrod, R., and Hamilton, W. D. (1981). The Evolution of Cooperation. Science 211:1390. doi: 10.1126/science.7466396
  5. Bak, P., and Chen, K. (1989). The physics of fractals. Phys. D 38:5. doi: 10.1016/0167-2789(89)90166-8
  6. Beig, M. T., Svenkeson, A., Bologna, M., West, B. J., and Grigolini, P. (2015). Critical slowing down in networks generating temporal complexity. Phys. Rev. E. 91:012907. doi: 10.1103/PhysRevE.91.012907
  7. Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., et al. (2012). Manifesto of computational social science. Eur. Phys. J. Special Topic. 214:325. doi: 10.1140/epjst/e2012-01697-8
  8. Failla, R., Ignaccolo, M., Grigolini, P., and Schwettmann, A. (2004). Random growth of interfaces as a subordinated process. Phys. Rev. E. 70:010101. doi: 10.1103/PhysRevE.70.010101
  9. Gintis, H. (2014). The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton, NJ: Princeton University Press.
  10. Grigolini, P., Piccinini,N., Svenkeson, A., Pramukkul, P., Lambert, D., and West, B. J. (2015) From neural and social cooperation to the global emergence of cognition. Front. Bioeng. Biotechnol. 3:78. doi: 10.3389/fbioe.2015.00078
  11. Hauser, O. P., Rand, D. G., Peysakhovich, A., and Nowak, M. A. (2014). Cooperating with the future. Nature 511, 220-223. doi: 10.1038/nature 13530
  12. Hauert, C., and Schuster, H. G. (1997). Effects of increasing the number of players and memory size in the iterated Prisoner's Dilemma: a numerical approach. Proc. Biol. Sci. 264:513 doi: 10.1098/rspb.1997.0073
  13. Helbing, D. (2017). The Dream of Controlling the World-and Why it Often Fails. Working Paper•
  14. Helbing, D., and Pournaras, E. (2015). Society: build digital democracy. Nature 527:7576. doi: 10.1038/527033a
  15. Hesse, J., and Gross, T. (2014). Self-organized criticality as a fundamental property of neural systems. Front. Sys. Neurosci. 8:166. doi 10.3389/fnsys.2014.00166
  16. Lipiello, E., De Arcangelis, L., and Godano, C. (2005). Memory in self-organized criticality. Europhys. Lett. 72:678. doi: 10.1209/epl/i2005-10292-x
  17. Kim, J. M., Bray, A. J., and Moore, M. A.(1992). Domain growth, directed polymers, and self-organized criticality. Phys. Rev. A. 45:8546.
  18. Lukovic, M., and Grigolini, P. (2008). Power spectra for both interrupted and perennial aging processes. J. Chem. Phys. 129:184102. doi: 10.1063/1.30 06051
  19. Luković, M., Vanni, F., Svenkeson, A., and Grigolini, P. (2014). Transmission of information at criticality. Phys. A 416:430. doi: 10.1016/j.physa.2014.08.066
  20. Mafahim, J. U., Lambert, D., Zare, M., and Grigolini, P. (2015). Complexity matching in neural networks. New J. Phys. 17:015003. doi: 10.1088/1367-2630/17/1/015003
  21. Mahmoodi, K., and Grigolini, P. (2017). Evolutionary game theory and criticality. J. Phys. A Math. Theor. 50:015101. doi: 10.1088/1751-8113/50/1/015101
  22. Martinello, M., Hidalgo, J., di Santo, S., Maritan, A., Plenz, D., and Muñoz, M. A. (2017). Neutral theory and scale-free neural dynamics. arXiv:1703.05079 [q-bio.NC]
  23. Nosenzo, D., Quercia, S., and Sefton, M. (2015). Cooperation in small groups: the effect of group size. Exp. Econ. 18:4. doi: 10.1007/s10683-013-9382-8
  24. Nowak, M. A., and May, R. M. (1992). Evolutionary games and spatial chaos. Nature 359:826. doi: 10.1038/359826a0
  25. Piccinini, N., Lambert, D., West, B. J., Bologna, M., and Grigolini, P. (2016). Non ergodic complexity management. Phys. Rev. E. 93:062301. doi: 10.1103/PhysRevE.93.062301
  26. Rand, D. G. (2016) Cooperation, fast and slow: meta-analytic evidence for a theory of social heuristics and self-interested deliberation. Psychol. Sci. 1:15. doi: 10.1177/0956797616654455
  27. Rosenfeld, S. (2013). Global consensus Theorem and self-Organized criticality: Unifying principles for Understanding self-Organization, swarm Intelligence and Mechanisms of carcinogenesis. Gene Regul. Sys. Biol. 7:23. doi: 10.4137/GRSB.S10885
  28. Stewart, A., and Plotkin, J. B. (2016). Small groups and long memories promote cooperation. Sci. Report 6:26889. doi: 10.1038/srep26889
  29. Turalska, M., West, B. J., and Grigolini, P. (2011). Temporal complexity of the order parameter at the phase transition. Phys. Rev. E. 83:061142. doi: 10.1038/srep01371
  30. Vanni, F., Luković, M., and Grigolini, P. (2011). Criticality and Transmission of Information in a Swarm of Cooperative Units. Phys. Rev. Lett. 107:078103. doi: 10.1103/PhysRevLett.107.078103
  31. Vilone, D., Ramasco, J. J., Sánchez, A., and San Miguel, M. (2012). Social and strategic imitation: the way to consensus. Sci. Rep. 2:686. doi: 10.1038/srep00686
  32. Vilone, D., Ramasco, J. J., Sánchez, A., and San Miguel, M. (2014). Social imitation versus strategic choice, or consensus versus cooperation, in the networked Prisoner's Dilemma. Phys. Rev. E. 90:022810. doi: 10.1103/PhysRevE.90.022810
  33. Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., and Jensen, H. J. (2016). 25 Years of self-organized criticality: concepts and controversies . Space Sci. Rev. 198, 3-44. doi: 10.1007/s11214-015-0155-x
  34. West, B. J., Turalska, M., and Grigolini, P. (2014). Networks of Echoes: Imitation, Innovation and Invisible Leaders. New York, NY: Springer International.
  35. Zare, M., and Grigolini, P. (2013). Citicality and avalanches in neural networks. Chaos Solitons Fractals 55:80. doi: 10.1016/j.chaos.2013.05.009
  36. Zapperi, S., Lauritsen, K. B., and Stanley, H. E. (1995). Self-Organized branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75:4071. doi: 10.1103/PhysRevLett.75.4071