Abstract
For a finite noncyclic group G, let Cyc(G) be the set of elements a of G such that 〈a, b〉 is cyclic for each b of G. The noncyclic graph of G is a graph with the vertex set G ∖ Cyc(G), having an edge between two distinct vertices x and y if 〈x, y〉 is not cyclic. In this paper, we classify all finite noncyclic groups whose noncyclic graphs are K1,n-free, where K1,n is a star and 3 ≤ n ≤ 6.
References (27)
- O'Bryant K., Patrick D., Smithline L., Wepsic E., Some facts about cycles and tidy groups, 1992, Mathematical Sciences Technical Reports (MSTR), 131.
- Kelarev A.V., Ryan J., Yearwood J., Cayley graphs as classi ers for data mining: The inuence of asymmetries, Discrete Math., 2009, 309, 5360-5369
- Abawajy J., Kelarev A.V., Chowdhury M., Power graphs: a survey, Electron. J. Graph Theory Appl., 2013, 1, 125-147
- Kelarev A.V., Ring Constructions and Applications, 2002, River Edge, N.J.: World Scienti c.
- Kelarev A.V., Graph Algebras and Automata, 2003, New York: Marcel Dekker.
- Kelarev A.V., Labelled Cayley graphs and minimal automata, Australas. J. Combin., 2004, 30, 95-101
- Abdollahi A., Hassanabadi A.M., Noncyclic graph of a group, Comm. Algebra, 2007, 35, 2057-2081
- Abdollahi A., Hassanabadi A.M., Non-cyclic graph associated with a group, J. Algebra Appl., 2009, 8, 243-257
- Costa D., Davis V., Gill K., Hinkle G., Reid L., Eulerian properties of non-commuting and non-cyclic graphs of nite groups, Comm. Algebra, 2018, 46, 2659-2665
- Aalipour G., Akbari S., Cameron P.J., Nikandish R., Shaveisi F., On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin., 2017, 24, #P3.16
- Kelarev A.V., Quinn S.J., A combinatorial property and power graphs of groups, Contrib. General Algebra, 2000, 12, 229-235
- Kelarev A.V., Quinn S.J., Directed graphs and combinatorial properties of semigroups, J. Algebra, 2002, 251, 16-26
- Kelarev A.V., Quinn S.J., Smolikova R., Power graphs and semigroups of matrices, Bull. Austral. Math. Soc., 2001, 63, 341- 344
- Ma X., Fu R., Lu X., Guo M., Zhao Z., Perfect codes in power graphs of nite groups, Open Math., 2017, 15, 1440-1449
- Feng M., Ma X., Wang K., The structure and metric dimension of the power graph of a nite group, European J. Combin., 2015, 43, 82-97
- Feng M., Ma X., Wang K., The full automorphism group of the power (di)graph of a nite group, European J. Combin., 2016, 52, 197-206
- Ma X., Feng M., Wang K., The strong metric dimension of the power graph of a nite group, Discrete Appl. Math., 2018, 239, 159-164
- Brauer R., Fowler K.A., On groups of even order, Ann. of Math. (2), 1955, 62, 565-583
- Selvakumar K., Subajini M., Crosscap of the non-cyclic graph of groups, AKCE Int. J. Graphs Comb., 2016, 13, 235-240
- Ma X., Non-cyclic graphs of (non)orientable genus one, Preprint, 2015, arXiv:1512.00935 [math.CO].
- Ma X., Li J., Wang K., The full automorphism group of the noncyclic graph of a nite noncyclic, Preprint, 2016.
- Doostabadi A., Erfanian A., Farrokhi D.G.M., On power graphs of nite groups with forbidden induced subgraphs, Indag. Math. (N.S.), 2014, 25, 525-533
- Akhlaghi Z., Tong-Viet H.P., Finite groups with K -free prime graphs, Algebr. Represent. Theory, 2015, 18, 235-256
- Kayacan S., K , -free intersection graphs of nite groups, Comm. Algebra, 2017, 45, 2466-2477
- Das A.K., Nongsiang D., On the genus of the commuting graphs of nite non-abelian groups, Int. Electron. J. Algebra, 2016, 19, 91-109
- Gorenstein D., Finite Groups, 1980, New York: Chelsea Publishing Co.
- Burnside W., Theory of Groups of Finite Order, 1955, New York: Dover Publications Inc.