Academia.eduAcademia.edu

Outline

Finite groups with star-free noncyclic graphs

Open Mathematics

https://doi.org/10.1515/MATH-2019-0071

Abstract

For a finite noncyclic group G, let Cyc(G) be the set of elements a of G such that 〈a, b〉 is cyclic for each b of G. The noncyclic graph of G is a graph with the vertex set G ∖ Cyc(G), having an edge between two distinct vertices x and y if 〈x, y〉 is not cyclic. In this paper, we classify all finite noncyclic groups whose noncyclic graphs are K1,n-free, where K1,n is a star and 3 ≤ n ≤ 6.

References (27)

  1. O'Bryant K., Patrick D., Smithline L., Wepsic E., Some facts about cycles and tidy groups, 1992, Mathematical Sciences Technical Reports (MSTR), 131.
  2. Kelarev A.V., Ryan J., Yearwood J., Cayley graphs as classi ers for data mining: The inuence of asymmetries, Discrete Math., 2009, 309, 5360-5369
  3. Abawajy J., Kelarev A.V., Chowdhury M., Power graphs: a survey, Electron. J. Graph Theory Appl., 2013, 1, 125-147
  4. Kelarev A.V., Ring Constructions and Applications, 2002, River Edge, N.J.: World Scienti c.
  5. Kelarev A.V., Graph Algebras and Automata, 2003, New York: Marcel Dekker.
  6. Kelarev A.V., Labelled Cayley graphs and minimal automata, Australas. J. Combin., 2004, 30, 95-101
  7. Abdollahi A., Hassanabadi A.M., Noncyclic graph of a group, Comm. Algebra, 2007, 35, 2057-2081
  8. Abdollahi A., Hassanabadi A.M., Non-cyclic graph associated with a group, J. Algebra Appl., 2009, 8, 243-257
  9. Costa D., Davis V., Gill K., Hinkle G., Reid L., Eulerian properties of non-commuting and non-cyclic graphs of nite groups, Comm. Algebra, 2018, 46, 2659-2665
  10. Aalipour G., Akbari S., Cameron P.J., Nikandish R., Shaveisi F., On the structure of the power graph and the enhanced power graph of a group, Electron. J. Combin., 2017, 24, #P3.16
  11. Kelarev A.V., Quinn S.J., A combinatorial property and power graphs of groups, Contrib. General Algebra, 2000, 12, 229-235
  12. Kelarev A.V., Quinn S.J., Directed graphs and combinatorial properties of semigroups, J. Algebra, 2002, 251, 16-26
  13. Kelarev A.V., Quinn S.J., Smolikova R., Power graphs and semigroups of matrices, Bull. Austral. Math. Soc., 2001, 63, 341- 344
  14. Ma X., Fu R., Lu X., Guo M., Zhao Z., Perfect codes in power graphs of nite groups, Open Math., 2017, 15, 1440-1449
  15. Feng M., Ma X., Wang K., The structure and metric dimension of the power graph of a nite group, European J. Combin., 2015, 43, 82-97
  16. Feng M., Ma X., Wang K., The full automorphism group of the power (di)graph of a nite group, European J. Combin., 2016, 52, 197-206
  17. Ma X., Feng M., Wang K., The strong metric dimension of the power graph of a nite group, Discrete Appl. Math., 2018, 239, 159-164
  18. Brauer R., Fowler K.A., On groups of even order, Ann. of Math. (2), 1955, 62, 565-583
  19. Selvakumar K., Subajini M., Crosscap of the non-cyclic graph of groups, AKCE Int. J. Graphs Comb., 2016, 13, 235-240
  20. Ma X., Non-cyclic graphs of (non)orientable genus one, Preprint, 2015, arXiv:1512.00935 [math.CO].
  21. Ma X., Li J., Wang K., The full automorphism group of the noncyclic graph of a nite noncyclic, Preprint, 2016.
  22. Doostabadi A., Erfanian A., Farrokhi D.G.M., On power graphs of nite groups with forbidden induced subgraphs, Indag. Math. (N.S.), 2014, 25, 525-533
  23. Akhlaghi Z., Tong-Viet H.P., Finite groups with K -free prime graphs, Algebr. Represent. Theory, 2015, 18, 235-256
  24. Kayacan S., K , -free intersection graphs of nite groups, Comm. Algebra, 2017, 45, 2466-2477
  25. Das A.K., Nongsiang D., On the genus of the commuting graphs of nite non-abelian groups, Int. Electron. J. Algebra, 2016, 19, 91-109
  26. Gorenstein D., Finite Groups, 1980, New York: Chelsea Publishing Co.
  27. Burnside W., Theory of Groups of Finite Order, 1955, New York: Dover Publications Inc.