On some identities for k-Fibonacci sequence
2014, International Journal of Contemporary Mathematical Sciences
https://doi.org/10.12988/IJCMS.2014.311120Abstract
We obtain some identities for k-Fibonacci numbers by using its Binet's formula. Also, another expression for the general term of the sequence, using the ordinary generating function, is provided.
References (12)
- C. Bolat, H. Köse, "On the Properties of k-Fibonacci Numbers", International of Contemporary Mathematical Sciences, 5(22) (2010), 1097-1105.
- C. Levesque, "On m-th order linear recurrences", The Fibonacci Quarterly, 23(4) (1985), 290-293.
- D. Jhala, K. Sisodiya, G. P. S. Rathore, "On Some Identities for k-Jacobsthal Numbers", International Journal of Mathematical Analysis, 7(12) (2013), 551-556.
- F. Koken, D. Bozkurt, "On the Jacobsthal numbers by matrix methods", International Journal of Contemporary Mathematical Sciences, 3(13) (2008), 605-614.
- F. Yilmaz, D. Bozkurt, "The Generalized Order-k Numbers Journal of Contemporary Mathematical Sciences, 4(34) (2009), 1685-1694.
- N. N. Vorobiov, Números de Fibonacci, Editora MIR, URSS, 1974.
- P. Catarino, "On some identities and generating functions for k-Pell numbers", International Journal of Mathematical Analysis, 7(38) (2013), 1877-1884.
- P. Catarino, P. Vasco, "Some basic properties and a two-by-two matrix involving the k-Pell Numbers", International Journal of Mathematical Analysis, 7(45) (2013), 2209-2215.
- P. Catarino, P. Vasco, "On some Identities and Generating Functions for k- Pell-Lucas sequence", Applied Mathematical Sciences, 7(98) (2013), 4867-4873.
- P. Catarino, P. Vasco, "Modified k-Pell Sequence: Some Identities and Ordinary Generating Function", Applied Mathematical Sciences, 7(121) (2013), 6031-6037.
- P. Catarino, A note involving two-by-two matrices of the k-Pell and sequences, International Mathematical Forum, 8(32) (2013), 1561 -1568.
- S. Falcón, Á. Plaza, "On the Fibonacci k-numbers", Chaos, Solitons & Fractals, 32(5) (2007), 1615-1624.