Abstract
Principal component analysis (PCA) is a dimensionality reduction modeling technique that transforms a set of process variables by rotating their axes of representation. Maximum Likelihood PCA (MLPCA) is an extension that accounts for different noise contributions in each variable. Neither PCA nor its extensions utilize external information about the model or data such as the range or distribution of the underlying measurements. Such prior information can be extracted from measured data and can be used to greatly enhance the model accuracy. This paper develops a Bayesian PCA (BPCA) modeling algorithm that improves the accuracy of estimating the parameters and measurements by incorporating prior knowledge about the data and model. The proposed approach integrates modeling and feature extraction by simultaneously solving parameter estimation and data reconciliation optimization problems. Methods for estimating the prior parameters from available data are discussed. Furthermore, BPCA reduces to PCA or MLPCA when a uniform prior is used. Several examples illustrate the benefits of BPCA versus existing methods even when the measurements violate the assumptions about their distribution.
References (35)
- J. V. Kresta, J. F. MacGregor, and T. E. Marlin, Can. J. Chem. Eng., 69, 35-47 (1991).
- B. M. Wise, N. L. Ricker, D. F. Veltkamp, and B. R. Kowalski, Proc. Cont. Qual., 1, 41 (1990).
- M. A. Kramer and R. S. H. Mah, Proc. Int. Conf. On Foundations of Computer Aided Process Operations, D. Rippin, J. Hale, J. Davis, eds. CACHE (1994).
- P. D. Wentzell, D. D. C. Hamilton, K. Faber, and B. R. Kowalski, J. of Chemometrics, 11, 339-366 (1997).
- J. O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer-Verlar, New York (1985).
- M. West, and J. Harrison, Forecasting and Models", Springer, York (1997).
- G. A. E. Seber, Multivariate Observations, Wiley, New York (1984).
- Press, S. James, Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference, second edition, Robert E. Krieger Publishing Company, Florida (1982).
- S. J. Press, Applied Multivariate Analysis, New York: Holt, Rinehart and Winston, Inc. (1972).
- J. K. Martin and R. P. McDonald, Psychometrika, 40, 4, 505-517 (1975).
- S. J. Press and K. Shigemasu, Contributions to Probability and Statistics: Essays in Honor of Ingram Olkin, 271-278 (1989).
- S. E. Lee and S. J. Press, Commun. Stat.-Theory Meth., 27, 8, 1871-1893 (1998).
- S. Wold, Chemometrics and Intelligent Laboratory Systems, 23, 149-161 (1994).
- B. R. Bakshi, AIChE Journal, 44, 7, 1596-1610 (1998).
- T. J. Hastie and W. Stuetzle, J. of American Statistical Association, 84, 406, 505-516 (1989).
- R. S. H. Mah, Chemical Process Structures and Information Flows, Butterworths, Boston (1990).
- J. B. Kadane, Controlled Clinical Trials, 16, 313-318 (1995).
- A. Gelman, J. B. Carlin, H. S. Stern, and D. Rubin, Bayesian Data Analysis, Chapman and Hall, London (1995).
- C. P. Robert, The Bayesian Choice: A Decision Theoretic Motivation, Springer-Verlag, New York (1994).
- M. A. Girshick, Ann. Math. Stat., 10, 203-224 (1939).
- J.S. Maritz, Empirical Bayes Methods, Methuen & CO., London (1970).
- B. Carlin and T. A. Bayes and Empirical Bayes Methods for Data Analysis, First edition, Monographs on Statistics and Applied Probability 69, Chapman & Hall (1996).
- W. Ku, R.H. Storer, and C. Georgakis, Chemometrics and Intellegent Laboratory Systems, 30, 179-196 (1995).
- A. Basilevsky, Statistical Factor Analysis and Related Methods: Theory and Applications, Wiley Series in Probability and Mathematical Statistics, New York (1994).
- S. Wold, Technometrics, 20, 4, 397-405 (1978).
- H. T. Eastment and W. J. Krzanowski, Technometrics, 24,1, 73-77 (1982).
- W. James and C. Stein, Proceedings of the Fourth Berkeley Symposium on Mathematics and Statistics, Berkeley: University of California Press 1, 361-379 (1961).
- M. H. Gruber, Improving efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators, Marcel Dekker, New York (1998).
- L. Johnston and M. Kramer, AIChE Journal, 41, 11 (1995).
- M. Kano, K. Miyazaki, S. Hasebe, and I. Hashimoto, J. Process Control, 10, 157-166 (2000).
- C. H. Luchmuller and C. E. Reese, Critical Reviews In Analytical Chemistry, 28,1, 21-49 (1998).
- M. N. Nounou, B. R. Bakshi, P. K. Goel, and X. Shen, AIChE Journal, accepted (2002)
- M. N. Nounou, B. R. Bakshi, P. K. Goel, and X. Shen, Industrial and Engineering Chemistry Research, 40, 1, 261 -274 (2001)
- W.-S. Chen, B. R. Bakshi, P. K. Goel, and S. Ungarala, Technical Report, Ohio State University (2002).
- D. Malakoff, Science, 286, 1460 (1999).