Abundant Rees matrix semigroups
1987, Journal of the Australian Mathematical Society
https://doi.org/10.1017/S1446788700034017Abstract
The class of abundant semigroups originally arose from ‘homological’ considerations in the theory of S-systems: they are the semigroup theoretic counterparts of PP-rings. Cancellative monoids, full subsemigroups of regular semigroups as well as the multiplicative semigroups of PP-rings are abundant. In this paper we investigate the properties of Rees matrix semigroups over abundant semigroups. Some of our results generalise McAlister's work on regular Rees matrix semigroups.
References (12)
- S. Armstrong, "The structure of type A semigroups', Semigroup Forum 29 (1984), 319-336.
- A. El-Qallali and J. B. Fountain, 'Idempotent connected abundant semigroups', Proc. Roy. Soc. Edinburgh Sect. A 91 (1981), 79-90.
- J. B. Fountain, 'Adequate semigroups', Proc. Edinburgh Math. Soc. 22 (1979), 113-125.
- J. B. Fountain, 'Abundant semigroups', Proc. London Math. Soc. (3) 44 (1982), 103-129.
- T. E. Hall, 'On regular semigroups', / . Algebra 24 (1973), 1-24.
- J. M. Howie, An Introduction to Semigroup Theory (Academic Press, London, 1976).
- M. V. Lawson, "The structure of type A semigroups', Quart. J. Math., to appear.
- M. V. Lawson, 'The natural partial order on an abundant semigroup' Proc. Edinburgh Math. Soc, to appear.
- E. S. Ljapin, Semigroups (Amer. Math. Soc., revised edition, 1968).
- D. B. McAlister, 'Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups' J. Austral. Math. Soc. (Series A) 31 (1981), 325-336.
- J. Meakin, "The Rees construction in regular semigroups', preprint.
- K. S. S. Nambooripad, 'Structure of regular semigroups I' Mem. Amer. Math. Soc. 22 Number 224 (1979).