Academia.eduAcademia.edu

Outline

An action selection mechanism for'conscious' software agents

2002, Cognitive Science Quarterly

Abstract
sparkles

AI

This paper presents an autonomous agent architecture based on global workspace theory to model aspects of consciousness. The focus lies on the action selection mechanism, which is crucial for decision-making in complex environments where multiple behaviors may compete. By implementing design assumptions from cognitive science and proposing testable hypotheses, the authors aim to further the understanding of cognition and consciousness through practical applications.

References (37)

  1. Agre, P. & Chapman, D. (1987). Pengi: An Implementation of a Theory of Activity. Proceedings of Sixth National Conference on AI, AAAI-87. Los Altos, CA: Morgan Kaufmann.
  2. Anderson, J. R. (1990). The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum.
  3. Baars, B.J. ( 1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.
  4. Baars, B.J. (1997). In the Theory of Consciousness. Oxford: Oxford University Press.
  5. Baars, B.J. (2002). The conscious access hypothesis: origins and recent evidence. TRENDS in Cognitive Sciences, Vol. 6 No. 1, (PP. 47-52). Jan. 2002.
  6. Bogner, M., U. Ramamurthy, and S. Franklin. (1999). "Consciousness" and Conceptual Learning in a Socially Situated Agent. In Human Cognition and Social Agent Technology, Advances in Consciousness Research Series, 19. Ed. K. Dautenhahn. Amsterdam: John Benjamins.
  7. Decugis, V. & Ferber, J. (1998). Action selection in an autonomous agent with a hierarchical distributed reactive planning architecture. Proceedings of the second international conference on autonomous agents. Minneapolis, MN USA.
  8. Damasio, A. R. (1994). Descartes' Error. New York: Gosset; Putnam Press.
  9. Dorer, Klaus. (1999). Behavior Networks for Continuous Domains using Situation- Dependent Motivations. In International Joint Conference on Articial Intelligence (IJCAI'99), pages 1233-1238.
  10. `20 ? Ericsson, K. A., and Kintsch, W. (1995). Long-term working memory. Psychological Review 102:21-245.
  11. Franklin, S. (1995). Artificial Minds. Cambridge MA: MIT Press.
  12. Franklin, S. (1997). Autonomous Age nts as Embodied AI. Cybernetics and Systems 28:499-520.
  13. Franklin, S. (2000). Deliberation and Voluntary Action in 'Conscious' Software Agents. Neural Network World 10:505-521.
  14. Franklin, S. (2001). Automating Human Information Agents. In Practical Applications of Intelligent Agents, ed. Z. Chen, and L. C. Jain. Berlin: Springer- Verlag.
  15. Franklin, S. (2001b). An Agent Architecture Potentially Capable of Robust Autonomy. AAAI Spring Symposium on Robust Autonomy; American Association for Artificial Intelligence; Stanford, CA; March.
  16. Franklin, S., & Graesser, A.C. (1997). Is it an Agent, or just a Program?: A Taxo nomy for Autonomous Agents. In Intelligent Agents III. Berlin: Springer Verlag.
  17. Franklin, S. Kelemen, A. & McCauley, L.; (1998). IDA: A Cognitive Agent Architecture. IEEE Conference on Systems, Man and Cybernetics.
  18. Hofstadter, R. D., & Mitchell, M. (1994). The Copycat Project: A model of mental fluidity and analogy -making. In Advances in connectionist and neural computation theory, Vol. 2: Analogical connections, eds. K. J. Holyoak & J. A. Barnden. Norwood N.J.: Ablex.
  19. Holland, J. H. (1986). A Mathematical Framework for Studying Learning in Classifier Systems. In Evolution, Games and Learning: Models for Adaption in Machine and Nature, vol. al, Amsterdam, ed. D. Farmer. : North-Holland.
  20. Jackson, J. V. (1987). Idea for a Mind. Siggart Newsletter, 181:23-26.
  21. Kanerva, P. (1988). Sparse Distributed Memory. Cambridge MA: The MIT Press.
  22. Kintsch, W. 1998. Comprehension. Cambridge: Cambridge University Press.
  23. Kondadadi, R. & Franklin, S. (2001). A Framework of Deliberative Decision Making in "Conscious" software Agents. In Proceedings Of Sixth International Symposium on Artificial Life and Robotics (AROB-01).
  24. Kokiniv, B. (1994a). A hybrid model of reasoning by analogy. In K. Holyoak and J. Barnden (Ed). Advances in connectionist and neutral computation theory. Vol. 2: Analogical connections. Norwood, NJ: Ablex.
  25. Kokiniv, B. (1994b). The DUAL cognitive architecture: A hybrid multi -agent approach. Proceedings of the Eleventh European Conference on AI. Wiley.
  26. Laird, E. J., Newell, A. & Rosenbloom, P. S. (1987). SOAR: An Architecture for General Intelligence. Artificial Intelligence 33:1-64.
  27. Maes, P. (1990). How to do the right thing. Connection Science 1:3.
  28. McCauley, T. L., & Franklin, S. (1998). An Architecture for Emotion. AAAI Fall Symposium Emotional and Intelligent: The Tangled Knot of Cognition"; AAAI; Orlando, FL.
  29. McCauley, L., Franklin, S. & Bogner, M. (2000). An Emotion-Based "Conscious" Software Agent Architecture. In Affective Interactions, Lecture Notes on Artificial Intelligence ed., vol. 1814, ed. A. Paiva. Berlin: Springer.
  30. Minsky. (1986). The Society of Mind. New York: Simon & Schuster.
  31. Negatu, A. & Franklin, S. (1999). Behavioral Learning for Adaptive software Agent. Intelligent Systems, Proceeding of the ISCA 8 th International Conference, pp. 91 -95, Denver, Colorado.
  32. Nii, H. P. (1986). "Blackboard Systems: The Blackboard Model of Problem Solving and the Evolution of Blackboard Architecture", AI Maagazine 7 (2).
  33. Rhodes, B. (1995). Pronomes in Behavior Nets. Technical R eport # 95-01 . MIT Media Lab, MIT, Mass.
  34. Sloman, A. (1999). What Sort of Architecture is Required for a Human-like Agent? In Foundations of Rational Agency, ed. M. Wooldridge, and A. Rao. Dordrecht, Netherlands: Kluwer Academic Publishers.
  35. Song, H., & Franklin, S. (2000). A Behavior Instantiation Agent Architecture. Connection Science 12:21-44.
  36. Tyrell, T. (1993). Computational Mechanisms for Action Selection. PhD Thesis. University of Edinburg, UK.
  37. Zhang, Z., Dasgupta, D., & Franklin, S. (1998). Metacognition in Software Agents using Classifier Systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence. Madison, Wisconsin.