Evaluation of wave drag reduction by flow control
2006, Aerospace Science and Technology
https://doi.org/10.1016/J.AST.2005.08.001Abstract
An analytical expression is proposed to estimate the wave drag of an aerofoil equipped with shock control. The analysis extends the conventional approach for a single normal shock wave in the absence of control, based on the knowledge that all types of successful shock control on transonic aerofoils cause bifurcated λ-shock structures. The influence of surface curvature on the λ-shock structure has been taken into account. The extended method has been found to produce fairly good agreement with the results obtained by CFD methods while requiring negligible computational effort. This new formulation is expected to be beneficial in the industrial design process of transonic aerofoils and wings where a large number of computational simulations have to be performed.
References (19)
- W. Bleakney, A.H. Taub, Interaction of shock waves, Rev. Modern Phys. 21 (1949) 584-605.
- G. Dargel, P. Thiede, Assessment of shock and boundary layer control concepts for hybrid laminar flow wing design, in: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 80, 2002, pp. 383- 414.
- J. Délery, R. Bur, The physics of shock wave/boundary layer inter- action control: last lessons learned, in: ECCOMASS 2000, Barcelona, 2000.
- H.A. Holden, H. Babinsky, Separated shock-boundary-layer interaction control using streamwise slots, J. Aircraft 42 (1) (2005) 166-171.
- H.A. Holden, H. Babinsky, Shock/boundary layer interaction control using 3D devices, AIAA Paper 2003-0447, 2003.
- S. Kobayashi, T. Adachi, Nonself-simular behavior of the von Neumann reflection, Phys. Fluids 12 (7) (2000) 1869-1877.
- R.C. Lock, The prediction of the drag of aerofoils and wings at high sub- sonic speeds, RAE TM Aero 2044, 1985.
- E. Loth, R. Jaiman, C. Dutton, S. White, F. Roos, J. Mace, D. Davis, Mesoflap and bleed flow control for a Mach 2 inlet, AIAA Paper 2004- 0855, 2004.
- H. Ogawa, H. Babinsky, Evaluation of wave drag reduction by flow con- trol, AIAA Paper 2005-1415, 2005.
- A. Sasoh, T. Takayama, T. Saito, A weak shock wave reflection over wedges, Shock Waves 2 (1993) 277-281.
- A.N. Smith, H. Babinsky, P.C. Dhanasekaran, A.M. Savill, W.N. Dawes, Computational investigation of groove controlled shock wave/boundary layer interaction, AIAA Paper 2003-0446, 2003.
- A.N. Smith, H. Babinsky, J. Fulker, P.R. Ashill, Shock-wave/boundary- layer interaction control using streamwise slots in transonic flows, J. Air- craft 41 (3) (2004) 540-546.
- A.N. Smith, H.A. Holden, H. Babinsky, J.L. Fulker, P.R. Ashil, Control of normal shock wave/turbulent boundary layer interactions using stream- wise grooves, AIAA Paper 2002-0978, 2002.
- B.L. Smith, A. Glezer, The formation and evolution of synthetic jets, Phys. Fluids 10 (9) (1998) 2281-2297.
- E. Stanewsky, J. Délery, J.L. Fulker, P. de Matteis, EUROSHOCK II - Drag Reduction by Shock and Boundary Layer Control, Notes on Numer- ical Fluid Mechanics and Multidisciplinary Design, vol. 80, 2002.
- E. Stanewsky, J. Délery, J.L. Fulker, G. Wolfgang, EUROSHOCK -Drag Reduction by Passive Shock Control, Notes on Numerical Fluid Mechan- ics, vol. 56, 1997.
- J. Sternberg, Triple-shock-wave intersections, Phys. Fluids 2 (1959) 179- 206.
- R. Szwaba, P. Doerffer, K. Namieśnik, O. Szulc, Flow structure in the re- gion of three shock wave interaction, Aerospace Science and Technology 8 (2004) 499-508.
- A.M. Tesdall, J.K. Hunter, Self-similar solutions for weak shock reflec- tion, J. Appl. Math. 63 (1) (2002) 42-61.