Academia.eduAcademia.edu

Outline

Computational annotation of protein function

2018, MOJ Proteomics & Bioinformatics

https://doi.org/10.15406/MOJPB.2018.07.00233

Abstract
sparkles

AI

Proteins play vital roles in cellular functions, and mutations in functional proteins can lead to diseases. Computational approaches for predicting protein function based on genomic sequences have become essential, especially as the field shifts focus from individual proteins to entire proteomes. However, accurate prediction remains challenging due to the complexity of protein functions, which cannot be universally defined or predicted due to variations in structure and function among proteins. Integrating data from various sources and employing innovative computational strategies are necessary to improve the accuracy of protein function annotation.

References (20)

  1. Borgwardt KM, Ong CS, Schönauer S, et al. Protein function prediction via graph kernels. Bioinformatics. 2005;21(Suppl 1):i47-i56.
  2. Marcotte EM, Pellegrini M, Ng HL, et al. Detecting protein function and protein-protein interactions from genome sequences. Science. 1999;285(5428):751-753.
  3. Rost B, Liu J, Nair R, et al. Automatic prediction of protein function. Cell Mol Life Sci. 2003;60(12):2637-2650.
  4. Friedberg I. Automated protein function prediction†the genomic challenge. Brief Bioinform. 2006;7(3):225-242.
  5. Hodgman TC. A historical perspective on gene/protein functional assignment. Bioinformatics. 2000;16(1):10-15.
  6. Vazquez A, Flammini A, Amos Maritan et al. Global protein function prediction in protein-protein interaction networks. Nature Biotechnology. 2003;21:697-700.
  7. Whisstock JC, Lesk AM. Prediction of protein functions from protein sequence and structure. Q Rev Biophys. 2003;36(3):307-340.
  8. Pellegrini M, Marcotte EM, Michael J Thompson et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad Sci. 1999;96(8):4285-4288.
  9. Yao H, Kristensen DM, Mihalek I et al. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J Mol Biol. 2003;326(1):255-261.
  10. Bartlett GJ, Annabel E, Janet M Thornton, et al. Inferring protein function from structure. Structural Bioinformatics. 2005;44:387-407.
  11. Deng M, Zhang K, Mehta S et al. Prediction of protein function using protein†protein interaction data. J Comput Biol. 2003;10(6):947-960.
  12. Skolnick J, Fetrow JS. From genes to protein structure and function: novel applications of computational approaches in the genomic era. Trends Biotechnol. 2000;18(1):34-39.
  13. Copyright: ©2018 Aliaa et al. Citation: Aliaa KB, Siddiquea MH, Rasula I, et al. Computational annotation of protein function. MOJ Proteomics Bioinform. 2018;7(3):195-197. DOI: 10.15406/mojpb.2018.07.00233
  14. Des Jardins M, Karp PD, Krummenacker M, et al. Prediction of enzyme classification from protein sequence without the use of sequence similarity. Proc Int Conf Intell Syst Mol Biol. 1997;5:92-9.
  15. King RD, Karwath A, Clare A, et al. The utility of different representations of protein sequence for predicting functional class. Bioinformatics. 2001;17(5):445-454.
  16. Brown MP, Grundy WN, Lin D et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A. 2000;97(1):262-267.
  17. Clare A, King RD. Machine learning of functional class from phenotype data. Bioinformatics. 2002;18(1):160-166.
  18. Radivojac P, Clark WT, Oron TR, et al. A large-scale evaluation of computational protein function prediction. Nat methods. 2013;10(3):221-227.
  19. Godzik A, Jambon M, Friedberg I, et al. Computational protein function prediction: are we making progress? Cell Mol Life Sci. 2007;64(19):2505-2511.
  20. Harrington CA, Rosenow C, Retief J, et al. Monitoring gene expression using DNA microarrays. Curr Opin Microbiol. 2000;3(3):285-291.