Academia.eduAcademia.edu

Outline

A generalization for the clique and independence numbers

2012, Electronic Journal of Linear Algebra

https://doi.org/10.13001/1081-3810.1512

Abstract

In this paper, lower and upper bounds for the clique and independence numbers are established in terms of the eigenvalues of the signless Laplacian matrix of a given graph G.

References (12)

  1. I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique problem. Handbook of Combinatorial Optimization, Supplement Vol. A, 1-74, Kluwer Acad. Publ., Dordrecht, 1999.
  2. M. Budinich. Exact bounds on the order of the maximum clique of a graph. Discrete Applied Mathematics, 127(3):535-543, 2003.
  3. D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Theory and its Applications, third edition. Johann Ambrosius Barth, Heidelberg, 1995.
  4. M. Grötschel, L Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization. Algorithms and Combinatorics: Study and Research Texts, Vol. 2, Springer-Verlag, Berlin, 1988.
  5. W. Haemers. Interlacing eigenvalues and graphs. Linear Algebra and its Applications, 226/228:593-616, 1995.
  6. W. Haemers and E. Spence. Enumeration of cospectral graphs. European Journal of Combina- torics, 25(2):199-211, 2004.
  7. J. Håstad. Clique is hard to approximate within n 1-ǫ . Acta Mathematica, 182(1):105-142, 1999.
  8. J. Liu and B. Liu. The maximum clique and the signless Laplacian eigenvalues. Czechoslovak Mathematical Journal, 58(133):1233-1240, 2008.
  9. M. Liu, B. Liu, and F. Wei. Graphs determined by their (signless) Laplacian spectra. Electronic Journal of Linear Algebra, 22:112-124, 2011.
  10. T. Motzkin and E.G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canadian Journal of Mathematics, 17:533-540, 1965.
  11. H.S. Wilf. Spectral bounds for the clique and independence numbers of graphs. Journal of Combinatorial Theory, Series B, 40(1):113-117, 1986.
  12. Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 23, pp. 164-170, February 2012 http://math.technion.ac.il/iic/ela