Academia.eduAcademia.edu

Outline

Thinking Fast and Slow in AI: the Role of Metacognition

Abstract
sparkles

AI

AI systems have advanced dramatically but often lack the broader competencies associated with human intelligence, such as adaptability and common sense reasoning. By examining human cognitive mechanisms, particularly D. Kahneman's dual-system theory of thinking, this research proposes a multi-agent AI architecture called SOFAI. This architecture comprises fast and slow agents, supplemented by a meta-cognitive agent that determines when to utilize either type based on resource constraints and expected rewards. Two instances of the SOFAI architecture are being implemented, focusing on different decision-making environments.

References (30)

  1. R. Ackerman and V. A. Thompson. Meta-reasoning: Monitoring and control of thinking and reasoning. Trends in Cognitive Sciences, 21(8):607-617, 2017.
  2. T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search. In Advances in Neural Information Processing Systems, pages 5360-5370, 2017.
  3. A. Balakrishnan, D. Bouneffouf, N. Mattei, and F. Rossi. Incorporating behavioral constraints in online AI systems. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), 2019.
  4. Y. Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.
  5. G. Booch, F. Fabiano, L. Horesh, K. Kate, J. Lenchner, N. Linck, A. Loreggia, K. Murgesan, N. Mattei, F. Rossi, and B. Srivastava. Thinking fast and slow in AI. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 15042-15046, 2021.
  6. P. Carruthers. Explicit nonconceptual metacognition. Philosophical Studies, 178(7):2337-2356, 2021.
  7. D. Chen, Y. Bai, W. Zhao, S. Ament, J. M. Gregoire, and C. P. Gomes. Deep reasoning networks: Thinking fast and slow. arXiv preprint arXiv:1906.00855, 2019.
  8. M. T. Cox. Metacognition in computation: A selected research review. Artificial intelligence, 169(2):104-141, 2005.
  9. M. T. Cox and A. Raja. Metareasoning: Thinking about thinking. MIT Press, 2011.
  10. R. Fagin, Y. Moses, J. Y. Halpern, and M. Y. Vardi. Reasoning about knowledge. MIT press, 2003.
  11. J. H. Flavell. Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American psychologist, 34(10):906, 1979.
  12. G. Gigerenzer and H. Brighton. Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive Science, 1(1):107-143, 2009.
  13. A. Glazier, A. Loreggia, N. Mattei, T. Rahgooy, F. Rossi, and K. B. Venable. Making human- like trade-offs in constrained environments by learning from demonstrations. arXiv preprint arXiv:2109.11018, 2021.
  14. G. Goel, N. Chen, and A. Wierman. Thinking fast and slow: Optimization decomposition across timescales. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1291-1298. IEEE, 2017.
  15. A. Gulati, S. Soni, and S. Rao. Interleaving fast and slow decision making. arXiv preprint arXiv:2010.16244, 2020.
  16. D. Kahneman. Thinking, Fast and Slow. Macmillan, 2011.
  17. P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection: Survey and perspectives. Evolutionary computation, 27(1):3-45, 2019.
  18. D. Kim, G. Y. Park, P. John, S. W. Lee, et al. Task complexity interacts with state-space uncer- tainty in the arbitration between model-based and model-free learning. Nature communications, 10(1):1-14, 2019.
  19. J. D. Kralik, J. H. Lee, P. S. Rosenbloom, P. C. Jackson Jr, S. L. Epstein, O. J. Romero, R. Sanz, O. Larue, H. R. Schmidtke, S. W. Lee, et al. Metacognition for a common model of cognition. Procedia computer science, 145:730-739, 2018.
  20. M. L. Littman, I. Ajunwa, G. Berger, C. Boutilier, M. Currie, F. Doshi-Velez, G. Hadfield, M. C. Horowitz, C. Isbell, H. Kitano, K. Levy, T. Lyons, M. Mitchell, J. Shah, S. Sloman, S. Vallor, and T. Walsh. Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report. Stanford University, 2021.
  21. G. Marcus. The next decade in AI: Four steps towards robust artificial intelligence. arXiv preprint arXiv:2002.06177, 2020.
  22. S. Mittal, A. Joshi, and T. Finin. Thinking, fast and slow: Combining vector spaces and knowledge graphs. arXiv preprint arXiv:1708.03310, 2017.
  23. T. O. Nelson. Metamemory: A theoretical framework and new findings. In Psychology of learning and motivation, volume 26, pages 125-173. Elsevier, 1990.
  24. R. Noothigattu, D. Bouneffouf, N. Mattei, R. Chandra, P. Madan, K. R. Varshney, M. Campbell, M. Singh, and F. Rossi. Teaching AI agents ethical values using reinforcement learning and policy orchestration. IBM J. Res. Dev., 63(4/5):2:1-2:9, 2019.
  25. I. Posner. Robots thinking fast and slow: On dual process theory and metacognition in embodied AI. 2020.
  26. J. Proust. The philosophy of metacognition: Mental agency and self-awareness. OUP Oxford, 2013.
  27. F. Rossi and A. Loreggia. Preferences and ethical priorities: thinking fast and slow in AI. In Proceedings of the 18th international conference on autonomous agents and multiagent systems, pages 3-4, 2019.
  28. F. Rossi and N. Mattei. Building ethically bounded AI. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI), 2019.
  29. A. Shenhav, M. M. Botvinick, and J. D. Cohen. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron, 79(2):217-240, 2013.
  30. V. A. Thompson, J. A. P. Turner, and G. Pennycook. Intuition, reason, and metacognition. Cognitive psychology, 63(3):107-140, 2011.