On Additive Bases and Harmonious Graphs
SIAM Journal on Algebraic Discrete Methods
https://doi.org/10.1137/0601045Abstract
This paper first considers several types of additive bases. A typical problem is to find nv(k), the largest n for which there exists a set {0 al < a2 <" < ak} Of distinct integers modulo n such that each in the range 0 =<-< n can be written at least once as mai + aj (modulo n) with </'. For example, nv(8) 24, as illustrated by the set {0, 1, 2, 4, 8, 13, 18, 22}. The other problems arise if at least is changed to at most, or </' to-</', or if the words modulo n are omitted. Tables and bounds are given for each of these problems. Then a closely related graph labeling problem is studied. A connected graph with n edges is called harmonious if it is possible to label the vertices with distinct numbers (modulo n) in such a way that the edge sums are also distinct (modulo n). Some infinite families of graphs (odd cycles, ladders, wheels,...) are shown to be harmonious while others (even cycles, most complete or complete bipartite graphs, .) are not. In fact most graphs are not harmonious. The function nv(k) is the size of the largest harmonious subgraph of the complete graph on k vertices.
References (87)
- R. ALTER AND J. A. BARNETT, Remarks on the postage stamp problem with applications to computers, in Proc. 8th Southeastern Conference on Combinatorics, Graph Theory, Computing, Congress Num. XIX, Utilitas Math. Pub., Winnipeg, 1977, pp. 43-59.
- A postage stamp problem, Amer. Math. Monthly, 87 (1980), pp. 206-209.
- G. BARON, ber Verallgemeinerungen des Langford'schen Problems, in Combinatorial Theory /nd its Applications, P. Erd6s et al., eds., Colloq. Math. Soc. Jinos Bolyai, 4, North-Holland, Amsterdam, 3 vols., 1970, pp. 81-92.
- L. D. BAUMERT, Cyclic Difference Sets, Lecture Notes in Math., 182, Springer-Verlag, Berlin, 1971.
- J.-C. BERMOND, Problem, in Combinatorics, A. Hajnal and V. T. S6s, eds., Colloq. Math. Soc. Jnos Bolyai, 18, North-Holland, Amsterdam, 2 vols., 1978, p. 1190.
- J.-C. BERMOND, A. E. BROUWER AND A. GERMA, Systkmes de triplets et diffr.ences associes, Probl6mes Combinatoires et Th6orie des Graphs, Colloq. Intern. du Centre National de la Rech. Scient., 260, Editions du Centre Nationale de la Recherche Scientifique, Paris, 1978, pp. 35-38.
- J.-C. BERMOND, m. KOTZIG AND J. TURGEON, On a combinatorial problem of antennas in radioastronomy, in Combinatorics, A. Hajnal and V. T. S6s, eds., Colloq. Math. Soc. Jinos Bolyai, 18, North-Holland, Amsterdam, 2 vols., 1978, pp. 135-149.
- M. R. BEST, A. E. BROUWER, F. J. MACWILLIAMS, A. M. ODLYZKO AND N. J. A. SLOANE, Bounds for binary codes of length less than 25, IEEE Trans. Information Theory, IT-24 (1978), pp. 81-93.
- G. S. BLOOM, A chronology of the Ringet-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N.Y. Acad. Sci., 326 (1979), pp. 32-51.
- G. S. BLOOM AND S. W. GOLOMB, Numbered complete graphs, unusual rulers, and assorted applications, in Theory and Applications of Graphs, Lecture Notes in Math., 642, Springer- Verlag, New York, 1978, pp. 53-65.
- Applications of numbered undirected graphs, Proc. IEEE, 65 (1977), pp. 562-570.
- R. BODENDIEK, H. SCHUMACHER AND H. WEGNER, ber grazib'se Graphen, Math.-Phys. Semes- terberichte, 24 (1977), pp. 103-126.
- R. C. BOSE AND S. CHOWLA, Theorems in the additive theory of numbers, Comment. Math. Helvet., 37 (1962-63), pp. 141-147.
- N. G DE BRUIJN, On the factorization offinite Abelian groups, Proc. Kon. Ned. Akad. Wetensch. Amsterdam, 56A (1953), pp. 258-264.
- On the factorization of cyclic groups, ibid., pp. 370-377.
- On number systems, Nieuw Archief voor Wiskunde, (3), IV (1956), pp. 15-17.
- J. CAHIT AND R. CAHIT, On the graceful numbering ofspanning trees, Information Processing Letters, 3 (1975), pp. 115-118.
- L. CARLITZ AND L. MOSER, On some specialfactorizations of (1 -x")/(1--x), Cana'd. Math. Bull. 9 (1966), pp. 421-426.
- R. O. DAVIES, On Langford's problem (//), Math. Gazette, 43 (1959), pp. 253-255.
- J. F. DILLON, The generalized Langford-Skolem problem, Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, Computing, Utilitas Math. Pub., Winnipeg, 1973, pp. 237- 247.
- P. ERDS AND R. L. GRAHAM, Old and new problems and results in combinatorial number theory, Monographies de l'Enseignement Math., to appear.
- P. ERD(SS AND H. HANANI, On a limit theorem in combinatorical analysis, Publ. Math. Debrecen, 10 (1963), pp. 10-13.
- P. ERD(S AND P. TURAN, On a problem of Sidon in additive number theory, and some related problems, J. London Math. Soc., 16 (1941), pp. 212-215 and 19 (1944), p. 208.
- R. FRUCHT, Graceful numbering of wheels and related graphs, Ann. N.Y. Acad. of Sci. 319 (1979), pp. 219-229.
- M. GARDNER, Mathematical games: the graceful graphs of Solomon Golomb, or how to number a graph parsimoniously, Scientific American, 226, 3 (1972), pp. 108-112; 226, 4 (1972), p. 104; 226, 6 (1972), p. 118.
- M. J. E. GOLAY, Note on the representation of 1, 2,..., n by differences, J. London Math. Soc., 4 (1972), pp. 729-734.
- S.W. GOLOMB, How to number a graph, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York, 1972, pp. 23-37.
- The largest graceful subgraph of the complete graph, Amer. Math. Monthly, 81 (1974), 499-501.
- S. W. GOLOMB AND G. S. BLOOM, Multi]arious applications of numbered graphs, in Proc. 2nd Caribbean Conference on Combinatorics and Computing, R. C. Read and C. C. Cadogan, eds., Univ. of West Indies, Cave Hill, Barbados, 1977, pp. 82-95.
- R. L. GRAHAM AND N. J. A. SLOANE, Lower bounds ]'or constant weight codes, IEEE Trans. Information Theory, IT-26 (1980), pp. 37-43.
- On constant weight codes and harmonious graphs, Utilitas Math., to appear.
- R. K. GuY, Monthly research problems 1969-73, Amer. Math. Monthly, 80 (1973), pp. 1120-1128.
- Monthly research problems 1969-75, ibid., 82 (1975), pp. 995-1004.
- Packing [1, n] with solutions of ax + by cz: the unity of combinatorics, in Teorie Combina- torie, Atti dei Convegni Lincei, 17, Vol. II, 1976, pp. 173-179.
- Monthly research problems 1969-77, Amer. Math. Monthly, 84 (1977), pp. 807-815, and 85 (1978), p. 263.
- R. K. GuY AND V. L. KEEL, JR., Monthly research problems 1969-71, Amer. Math. Monthly, 78 (1971), pp. 1113-1122.
- A. GYA.RFAS AND J. LEHEL, A method to generate graceful trees, Probl6mes Combinatoires et Th6orie des Graphs, Colloq. Intern. du Centre National de la Rech. Scient. 260, lditions du Centre National de la Recherche Scientifique, Paris, 1978, pp. 207-209.
- N. H.MMERER AND G. HOFMEISTER, Zu einer Vermutung yon Rohrbach, J. Reine Angew. Math. 286/287 (1976), pp. 239-247.
- E. HRTTER, Basen fiir Gitterpunktmengen, J. Reine Angew. Math. 202 (1959), pp. 153-170.
- G. HAJt3S, Sur la factorisation des groupes abgliens, (asopis Pst. Mat. Fys., 74 (1950), pp. 157-162.
- Sur le problkme de factorisation des groupes cycliques, Acta Math. Acad. Sci. Hungar., (1950), pp. 189-195.
- H. HALBERSTAM AND K. F. ROTH, Sequences, Vol. 1, Oxford University Press, Oxford, 1966.
- J. I. HALL, A. J. E. M. JANSEN, A. W. J. KOLEN AND J. H. VAN LINT, Equidistant codes with distance 12, Discrete Math., 17 (1977), pp. 71-83.
- H. HANANI, A note on Steiner triple systems, Math. Scand., 8 (1960), pp. 154-156.
- C. B. HASELGROVE AND J. LEECH, Note on restricted difference bases, J. London Math. Soc. 32 (1957), pp. 228-231.
- R. D. HEATH-BROWN AND H. IWANIEC, On the difference between consecutive primes, Bull Amer. Math. Soc., (1979), pp. 758-760.
- R. L. HEIMER AND H. LANGENBACH, The stamp problem, J. Recreational Math., 7 (1974), pp. 235-250.
- C. HOEDE AND H. KUIPER, All wheels are graceful, Utilitas Math., 14 (1978), p. 311.
- J. R. ISBELL, Perfect addition sets, Discrete Math., 24 (1978), pp. 13-18.
- W. KLOTZ, Line obere Schranke fiir die Reichweite einer Extremalbasis zweiter Ordnung, J. Reine Angew. Math., 238 (1969), pp. 161-168.
- K. M. KOH, T. TAN AND D. G. ROGERS, Two theorems on graceful trees, Discrete Math., 25 (1979), pp. 141-148.
- A. KOTZG, On certain vertex-valuations o[finite graphs, Utilitas Math., 4 (1973), pp. 261-290.
- A. KOTZIG AND A. ROSA, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), pp. 451-461.
- A. KOTZIG AND J. TURGEON, -Valuations of regular graphs with complete components, in Combinatorics, A. Hajnal and V. T. S6s, eds., Colloq. Math. Soc. Jnos Bolyai, 18, North- Holland, Amsterdam, 2 vols., 1978, pp. 697-703.
- C. W. H. LAM, Nth power residue addition sets, J. Combinatorial Theory, 20A (1976), pp. 20-33.
- C. D. LANGFORD, Problem, Math. Gazette, 42 (1958), p. 228.
- J. LEECH, On the representation of 1, 2,. ., n by differences, J. London Math. Soc., 31 (1956), pp. 160-169.
- Another tree labelling problem, Amer. Math. Monthly, 82 (1975), pp. 923-925.
- E. LEVINE, On the generalized Langford problem, Fibonacci Quarterly, 6 (1968), pp. 135-138.
- W. F. LUNNON, A postage stamp problem, Computer J., 12 (1969), pp. 377-380.
- D. MCCARTHY, R. C. MULLIN, P. J. SCHELLENBERG, R. G. STANTON, AND S. A. VANSTONE, On approximations to a projective plane of order 6, Ars Combinatoria 2 (1976), pp. 111-168.
- F. J. MACWILLIAMS AND N. J. A. SLOANE, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- M. MAHEO, Strongly graceful graphs, Discrete Math., 29 (1980), pp. 39-46.
- J. C. P. MILLER, Difference bases: three problems in additive number theory, in Computers in Number Theory, A. O. L. Atkin and B. J. Birch, eds., Academic Press, N.Y., 1971, pp. 299-322.
- L. MOSER, On the representation of 1, 2,..., n by sums, Acta Arith., 6 (1960), pp. 11-13.
- L. MOSER, J. R. POUNDER AND J. RIDDELL, On the cardinality o[ h-bases for n, J. London Math. Soc., 44 (1969), pp. 397-407.
- M. B. NATHANSON, Additive h-bases ]'or lattice points, Second International Conference on Combinatorial Mathematics, Ann. N.Y. Acad. Sci., 319 (1979), pp. 413-414.
- R. NOWAKOWSKI, Generalizations of the Lang]:ord-Skolem problem, M.Sc. Thesis, University of Calgary, 1975.
- C. J. PRIDAY, On Langford's problem (I), Math. Gazette, 43 (1959), pp. 250-253.
- S. P. RAO HEBBARE, Graceful cycles, Utilitas Math. 10 (1976), pp. 307-317.
- H. ROHRBACH, Ein Be#rag zur additiven Zahlentheorie, Math. Zeit., 42 (1937), pp. 1-30.
- Anwendung eines Satzes der additiven Zahlentheorie auf eine grappentheoretische Frage, ibid., pp. 538-542.
- A. ROSA, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod, Paris, 1967, pp. 349-355.
- D. P. ROSELLE, Distributions of integers into s-tuples with given differences, Proc. Manitoba Conf. Number. Math., Dept. of Computer Science, University of Manitoba, Winnipeg, 1971, pp. 31-42.
- Comments and complements, Amer. Math. Monthly, 81 (1974), pp. 1097-1099.
- D. P. ROSELLE AND T. C. THOMASSON, JR, On generalized Langford sequences, J. Combinatorial Theory, 11A (1971), pp. 196-199.
- A.O. SANDS, On the factorisation offinite abelian groups, Acta Math. Acad. Sci. Hungar., 8 (1957), pp. 65-86 and 13 (1962), pp. 153-169.
- The factorization of Abelian groups, Quart. J. Math. Oxford (2), 10 (1959), pp. 81-91.
- J. SCH6NHEIM, On maximal systems of k-tuples, Stud. Sci. Math. Hungar., (1966), pp. 363-368.
- G. J. SIMMONS, Synch-sets: a variant of difference sets, Proc. 5th Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Math. Pub. Co., Winnipeg, 1974, pp. 625-645.
- T. SKOLEM, On certain distributions of integers'in pairs with given differences, Math. Scand., 5 (1957), pp. 57-68.
- R. G. STANTON, J. A. BATE AND R. C. MULLIN, Some tables for the postage stamp problem, Proc. Fourth Manitoba Conference on Numerical Math., Utilitas Math. Pub., Winnipeg, 1974, pp. 351-356.
- R. G. STANTON, J. G. KALBFLEISCH AND R. C. MULLIN, Covering and packing designs, Proc 2nd Chapel Hill Conference on Combinatorical Mathematics and its Applications, R. C. Bose et al., eds., Chapel Hill, 1970, pp. 428-450.
- R. G. STANTON AND C. R. ZARNKE, Labelling of balanced trees, Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, Computing, Utilitas Math. Pub., Winnipeg, 1973, pp. 479-495.
- A. ST(3HR, Gel6ste und ungeliste Fragen fiber Basen der natiirlichen Zahlenreihe, J. Reine Angew. Math., 194 (1955), pp. 40-65 and 111-140.
- H. TAYLOR, Odd path sums in an edge-labeled tree, Math. Mag., 50 (1977), pp. 258-259.
- B. WICHMANN, A note on restricted difference bases, J. London Math. Soc., 38 (1962), pp. 465-466.