Academia.eduAcademia.edu

Outline

Hydrothermal Crystallization of Ceramics

Abstract

In broad terms, hydrothermal synthesis is a technology for crystallizing materials (chemical compounds) directly from aqueous solution by adept control of thermodynamic variables (temperature, pressure and composition). The objective of this chapter is to introduce the field of hydrothermal materials synthesis and show how understanding solution thermodynamics of the aqueous medium can be used for engineering hydrothermal crystallization processes. In the first section, we will focus on hydrothermal synthesis as a materials synthesis technology by,providing history, process definitions, technological merits and comments on its current implementation in industry. In the second section, we will describe how thermodynamic modeling is being developed as an engineering tool to predict equilibrium phase assemblages and use this predictive power as an engineering tool for development of hydrothermal technology for materials synthesis.

References (78)

  1. REFERENCES PI K. F. E. Schafthaul, Gelehrte Anzeigen Bayer. Akad., 20 (1845) 557-593.
  2. PI K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, Noyes Publications/William Andrew Publishing LLC, Norwich, NY, U.S.A. (2001).
  3. M. J. G. Van Hout, J. C. Verplanke, J. M. Robertson, Mater. Res. Bull., 10 (1975) 125-132.
  4. M. Yoshimura, W. L. Suchanek, K. Byrappa, MRS Bull., 25 (2000) 17-25.
  5. II51 [61 [71 PI [91 VOI illI WI P31 P41 v51 [I61 [I71 [If31 i-191 PO1 Pll WI v31 [241 1251 WI r271 WI 1291 [301 [311 [321 [331 Y. Suwa, Y. Sugimoto, S. Naka, Funtai Oyobi Fummatsu-Yakin, 25 (1978) 20-23.
  6. M. Figlarz, Perspect. Solid State Chem., (1995) l-2
  7. R. A. Laudise, Chem. & Eng. News, September 28 (1987) 30-43.
  8. E. D. Kolb, R. L. Barns, R. A. Laudise, J. Crystal Growth, 50 (1980) 404-418.
  9. R. Roy, J. Solid State Chem., 111 (1994) 11-17.
  10. G. Demazeau, In Proceedings of Joint ISHR & ICSTR, Kochi, Japan, July 25-28, 2000 (ed K. Yanagisawa and Q. Feng), Nishimura Tosha-do Ltd., Kochi, Japan, (2002) pp. l-5.
  11. S. Somiya, ed. Hydrothermal Reactions for Materials Science and Engineering. An Overview of Research in Japan. Elsevier Science Publishers Ltd., London (1989).
  12. J. 0. Eckert Jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka, R. E. Riman, J. Am. Ceram. Sot., 79 (1996) 2929-2939.
  13. M. M. Lencka, R. E. Riman, Chem. Mater., 7 (1995) 18-25.
  14. W. Suchanek, H. Suda, M. Yashima, M. Kakihana, M. Yoshimura, J. Mater. Res., 10 (1995) 521-529.
  15. T. Bein, In Supramolecular Architecture. Synthetic Control in Thin Films and Solids, ACS Symp. Series. Vol. 499 (ed T. Bein) (1992) pp. 274-293.
  16. M. S. Whittingham, Cm-r. Opinion Solid State & Mater. Sci., 1 (1996) 227-232.
  17. A. Szymanski, E. Abgarowicz, A. Bakon, A. Niedbalska, R. Salacinski, J. Sentek, Diamond and Related Materials, 4 (1995) 234-235.
  18. W. L. Suchanek, J. Libera, Y. Gogotsi, M. Yoshimura, J. Solid State Chem., 160 (2001) 184-188.
  19. T. Sugimoto, Fine Particles, Synthesis, Characterization, and Mechanisms of Growth, Marcel-Dekker, Inc., New York, 2000.
  20. R. E. Riman, High Performance Ceramics: Surface Chemistry in Processing Technology, edited by R. Pugh and L. Bergstrom, Marcel-Dekker, NY, (1993) pp. 29-69.
  21. T. A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis, Academic Press, San Diego, CA (1996).
  22. K. Haberko, W. Pyda, In Science and Technology of Zirconia II, Advances in Ceramics Vol. 12 (ed N. Claussen, M. Ruhle, A. H. Heuer), (1984) pp. 774-783.
  23. R. E. Riman, S-B. Cho, U.S. Patent 6,159,552, December 12,200O.
  24. R. E. Riman, S-B. Cho, U.S. Patent 6,322,898, November 27,200l.
  25. W. Suchanek, M. Yoshimura, J. Am. Ceram. Sot., 81 (1998) 2864-2868.
  26. M. Yoshimura, W. Suchanek, Solid State Ionics, 98 (1997) 197-208.
  27. F. F. Lange, Science, 273 (1996) 903-909.
  28. J. H. Fendler, F. C. Meldrum, Adv. Mater., 7 (1995) 607-632.
  29. I. Villegas, J. L. Stickney, J. Electrochem. Sot., 139 (1992) 686-694.
  30. J. A. Switzer, C. J. Hung, B. E. Breyfogle, M. G. Shumsky, R. Vanleeuwen, T. D. Golden, Science, 264 (1994) 1573-1576.
  31. R. Clarke, R. W. Whatmore, J. Crystal Growth, 33 (1976) 29-38.
  32. P. Pinceloup, K. M. Mikulka, R. E. Riman, P. E. Burgener, L. E. McCandlish, M. Lencka, Perovskite Oxides for Electronics, Energy Conversion and Energy Efficient Applications, Ceramic Transactions, Volume 104, edited by W. Wong-Ng, T. Holesinger, G. Riley, T. Guo, American Ceramic Society, Westerville, OH (2000) pp. 253-260.
  33. M. Oledzka, M. Lencka, P. Pinceloup, K. Mikulka-Bolen, L. E. McCandlish, R. E. Riman, Chemistry of Materials, in press, August 2002.
  34. W. L. Suchanek, M. Oledzka, K. Mikulka-Bolen, R. L. Pfeffer, M. Lencka, L. McCandlish, R. E. Riman, (2002). In Proceedings of Fifth International Conference on Solvothermal Reactions (ICSTR), East Brunswick, New Jersey, July 22-26,2002 (ed. R. E. Riman), pp. 159-164.
  35. I [611 [621 [631 [641 [651 [661 [671 [681 [@I [701 [711 [721 [731 W. S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, Appl. Phys. Lett., 66 (1995) 1027-1029.
  36. Y. Sakabe, N. Wada, Y. J. Hamaji, Korean Phys. Sot., 32 (1998) S260-S264.
  37. D. Hennings, S. J. Schreinmacher, European Ceram. Sot., 9 (1992) 41-46.
  38. S. Komameni, R. Roy, Q, H. Li, Mater. Res. Bull., 27 (1992) 1393-1405.
  39. L. P. Colletti, B. H. Flowers Jr., J. L. Stickney, J. Electrochem. Sot., 145 (1998) 1442-1449.
  40. W. L. Suchanek, P. Shuk, K. Byrappa, R. E. Riman, K. S. TenHuisen, V. F. Janas, Biomaterials, 23 (2002) 699-710.
  41. K. Hamada, M. Senna, J. Mater. Sci., 31 (1996) 1725-1728.
  42. N. V. Kosova, A. Kh Khabibullin, V. V. Boldyrev, Solid State Ionics, 101-103 (1997) 53- 58. C.-W. Chen, R. E. Riman, submitted to Chem. Mater (2002).
  43. D. Peters, J. Mater. Chem., 10 (1996) 1605-1618.
  44. J. C. Puippe, R. E. Acosta, R. J. von Gutfeld, J. Electrochem. Sot., 128 (1981) 2539-2545.
  45. T. Itoh, S. Hori, M. Abe, Y. Tamaura, J. Appl. Phys., 69 (1991) 5911-5914.
  46. Y. Matsurnoto, M. Fujisue, T. Sasaki, J. Hombo, M. Nagata, J. Electroanalyt. Chem., 369 (1994) 251-254.
  47. K. Yanagisawa, M. Nishioka, N. Yamasaki, Am. Ceram. Sot. Bull., 64 (1985) 1563-1567.
  48. N. Yamasaki, T. Weiping, K. Yanagisawa, J. Mater. Res., 8 (1993) 1972-1976.
  49. M. Yoshimura, S. Somiya, Materials Chemistry and Physics, 61 (1999) l-8.
  50. H. Xu, L. Gao, J. Guo, J. European Ceram. Sot., 22 (2002) 1163-l 170.
  51. L. Yan, Y. Li, Z-X. Deng, J. Zhuang, X. Sun, Int. J. Inorg. Mater., 3 (2001) 633-637.
  52. F. Ahmed, R. F. Belt, G. Gashurov, J. Appl. Phys., 60 (1986) 839-841.
  53. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, J. Appl. Phys., 47 (1976) 4980-4985.
  54. R. Uhrin, (2002). Private communication.
  55. A. J. Brown, J. Bultitude, J. M. Lawson, H. D. Winbow, S. Witek, Engineered Materials Handbook, ~014, Ceramics and Glasses, ASM International, U.S.A. (1991) pp. 43-51.
  56. W. J. Dawson, Ceram. Bull., 67 (1988) 1673-1678.
  57. Ch. F. Baes Jr., R. E. Mesmer, The Hydrolysis of Cations, Wiley-Interscience, New York, NY, U.S.A. (1976).
  58. J. H. Adair, R. P. Denkiewicz, F. J. Arriagada, K. Osseo-Asare, in Ceramic Transactions, vol. I, Ceramic Powder Science IIA, American Ceramic Society; (ed. G. L. Messing, E. R. Fuller Jr., H. Hausner) Westerville, OH, (1988) pp. 135-145.
  59. K. Osseo-Asare, F. J. Arriagada, J. H. Adair, in Ceramic Transactions, vol. I, Ceramic Powder Science IIA, American Ceramic Society; (ed. G. L. Messing, E. R. Fuller, Jr., H. Hausner);
  60. Westerville, OH, (1988) pp. 47-53.
  61. M. M. Lencka, R. E. Riman, J. Am. Ceram. Sot., 76 (1993) 2649-2659.
  62. M. M. Lencka, R. E. Riman, Chem. Mater., 5 (1993) 61-70.
  63. M. M. Lencka, R. E. Riman, Ferroelectrics, 15 1 (1994) 159-164.
  64. M. M. Lencka, R. E. Riman, Chem. Mater., 7 (1995) 18-25.
  65. M. M. Lencka, A. Anderko, R. E. Riman, J. Am. Chem. Sot., 78 (1995) 2609-2618.
  66. M. M. Lencka, E. Nielsen, A. Anderko, R. E. Riman, Chem. Mater., 9 (1997) 1116-1125.
  67. H. C. Helgeson, D. H. Kirkham, G. C. Flowers, Am. J. Sci., 281 (1981) 1249-1428.
  68. J. C. Tanger, H. C. Helgeson, Am. J. Sci., 288 (1988) 19-98.
  69. L. A. Bromley, AIChE J., 19 (1973) 313-20.
  70. K. S. Pitzer, J. Phys. Chem., 77 (1973) 268-277.
  71. J. F. Zemaitis Jr., D. M. Clark, M. Rafal, N. C. Scrivner, Handbook of Aqueous Electrolyte Thermodynamics: Theory & Application, AIChE, New York, NY (1986).
  72. G. Soave, Chem. Eng. Sci., 27 (1972) 1197-1203.
  73. M. Rafal, J. W. Berthold, N. C. Scrivner, S. L. Grise, in Models for Thermodynamic and Phase Equilibria Calculations, M. Dekker, New York, NY, U.S.A, (1995) pp. 601-670.
  74. M. M. Lencka, R. E. Riman, in Encyclopedia of Smart Materials, Chapter X, Wiley&Sons, New York, (2002) in press.
  75. M. M. Lencka, R. E. Riman, Thermochimica Acta, 256 (1995) 193-203.
  76. J. 0. Eckert, Jr., I.-C. Lin, M. M. Lencka, P. M. Bridenbaugh, A. Navrotsky, R. A. Laudise, R. E. Riman, Thermochimica Acta, 286 (1996) 233-243.
  77. M. M. Lencka, M. Oledzka, R. E. Riman, Chem. Mater., 12 (2000) 1323-1330.
  78. S.-B. Cho, M. Oledzka, R. E. Riman, J. Crystal Growth, 226 (2001) 313-326.