Academia.eduAcademia.edu

Outline

Optimal Control on the Rotation Group SO (3)

Carpathian Journal of Mathematics

https://doi.org/10.37193/CJM.2012.02.03

Abstract

A typical left-invariant optimal control problem on the rotation group SO (3) is investigated. The reduced Hamilton equations associated with an extremal curve are derived in a simple and elegant manner. These equations are then explicitly integrated by Jacobi elliptic functions.

References (16)

  1. Agrachev, A. A. and Sachkov, Y. L., Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004
  2. Armitage, J. V. and Eberlein, W. F., Elliptic Functions, Cambridge University Press, Cambridge, 2006
  3. Bloch, A. M., Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003
  4. Brockett, R. W., System theory on group manifolds and coset spaces, SIAM J. Control, 10 (1972) , No. 2, 265-284
  5. Jurdjevic, V., Non-Euclidean elastica, American J. Math., 117 (1995), No. 1, 93-124
  6. Jurdjevic, V., Geometric Control Theory, Cambridge University Press, Cambridge, 1997
  7. Jurdjevic, V. and Sussmann, H. J., Control systems on Lie groups, J. Differential Equations, 12 (1972), No. 2, 313-329
  8. Krishnaprasad, P. S., Optimal control and Poisson reduction, Technical Research Report 93-87, Institute for Systems Research, University of Maryland, 1993
  9. Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry, Second ed., Springer-Verlag, New York, 1999
  10. Puta, M., Optimal control problems on matrix Lie groups, Quad. Sem. Top. Alg. e Diff., Univ. di Roma "La Sapienza", 1996
  11. Puta, M., Stability and control in spacecraft dynamics, J. Lie Theory, 7 (1997), No. 2, 269-278
  12. Remsing, C. C., Optimal control and Hamilton-Poisson formalism, Int. J. Pure Appl. Math., 59 (2010), No. 1, 11-17
  13. Remsing, C. C., Control and integrability on SO (3), in Proceedings of the 2010 International Conference of Applied and Engineering Mathematics, London, U. K., June 30 -July 2, 2010 (Ao, S.I. et al., Eds.), IAENG, Hong Kong, 2010, 1705-1710
  14. Remsing, C. C., Optimal control and integrability on Lie groups, An. Univ. Vest Timis ¸., ser. Mat.-Inform., 49 (2011), No. 2, 101-118
  15. Spindler, K., Optimal attitude control of a rigid body, Appl. Math. Optim., 34 (1996), No. 1, 79-90
  16. Spindler, K., Optimal control on Lie groups with applications to attitude control, Math. Control Signals Syst., 11 (1998), No. 2, 197-219