Optimal Control on the Rotation Group SO (3)
Carpathian Journal of Mathematics
https://doi.org/10.37193/CJM.2012.02.03Abstract
A typical left-invariant optimal control problem on the rotation group SO (3) is investigated. The reduced Hamilton equations associated with an extremal curve are derived in a simple and elegant manner. These equations are then explicitly integrated by Jacobi elliptic functions.
References (16)
- Agrachev, A. A. and Sachkov, Y. L., Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004
- Armitage, J. V. and Eberlein, W. F., Elliptic Functions, Cambridge University Press, Cambridge, 2006
- Bloch, A. M., Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003
- Brockett, R. W., System theory on group manifolds and coset spaces, SIAM J. Control, 10 (1972) , No. 2, 265-284
- Jurdjevic, V., Non-Euclidean elastica, American J. Math., 117 (1995), No. 1, 93-124
- Jurdjevic, V., Geometric Control Theory, Cambridge University Press, Cambridge, 1997
- Jurdjevic, V. and Sussmann, H. J., Control systems on Lie groups, J. Differential Equations, 12 (1972), No. 2, 313-329
- Krishnaprasad, P. S., Optimal control and Poisson reduction, Technical Research Report 93-87, Institute for Systems Research, University of Maryland, 1993
- Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry, Second ed., Springer-Verlag, New York, 1999
- Puta, M., Optimal control problems on matrix Lie groups, Quad. Sem. Top. Alg. e Diff., Univ. di Roma "La Sapienza", 1996
- Puta, M., Stability and control in spacecraft dynamics, J. Lie Theory, 7 (1997), No. 2, 269-278
- Remsing, C. C., Optimal control and Hamilton-Poisson formalism, Int. J. Pure Appl. Math., 59 (2010), No. 1, 11-17
- Remsing, C. C., Control and integrability on SO (3), in Proceedings of the 2010 International Conference of Applied and Engineering Mathematics, London, U. K., June 30 -July 2, 2010 (Ao, S.I. et al., Eds.), IAENG, Hong Kong, 2010, 1705-1710
- Remsing, C. C., Optimal control and integrability on Lie groups, An. Univ. Vest Timis ¸., ser. Mat.-Inform., 49 (2011), No. 2, 101-118
- Spindler, K., Optimal attitude control of a rigid body, Appl. Math. Optim., 34 (1996), No. 1, 79-90
- Spindler, K., Optimal control on Lie groups with applications to attitude control, Math. Control Signals Syst., 11 (1998), No. 2, 197-219