Fuzzy Logic with Engineering Applicaiton
Abstract
AI
AI
This second edition of the book on fuzzy logic and its engineering applications discusses the advancements in fuzzy set theory since the first publication in 1995. It highlights the competitive nature of fuzzy systems with traditional linear algebra methods in speed and accuracy. The author emphasizes the careful usage of definitional terms related to uncertainty theories and addresses the misconceptions in the literature regarding axioms and laws. Several new sections have been added to capture recent developments in this rapidly evolving field, alongside corrected errata from the first edition.
References (244)
- Arciszewski, T, Sauer, T., and Schum, D. (2003). ''Conceptual designing: Chaos-based approach,'' J. Intell. Fuzzy Syst., vol. 13, pp. 45-60.
- REFERENCES Bandemer, H. and Näther, W. (1992). Fuzzy data analysis, Kluwer Academic, Dordrecht.
- Belohlavek, R., Klir, G., Lewis, H., and Way, E. (2002). ''On the capability of fuzzy set theory to represent concepts'', Int. J. Gen. Syst., vol. 31, pp. 569-585.
- Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York.
- Dubois, D. and Prade, H. (1980). Fuzzy sets and systems, theory and applications, Academic Press, New York.
- Gupta, M. and Qi, J. (1991). ''Theory of T-norms and fuzzy inference methods,'' Fuzzy Sets Syst., vol. 40, pp. 431-450.
- Klement, E., Mesiar, R., and Pap, E. (2000). Triangular Norms, Kluwer Academic, Boston.
- Klir, G. and Folger, T. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall, Englewood Cliffs, NJ.
- Klir, G. and Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications, Prentice Hall, Upper Saddle River, NJ.
- Kosko, B. (1992). Neural networks and fuzzy systems, Prentice Hall, Englewood Cliffs, NJ.
- Menger, K. (1942). ''Statistical metrics,'' Proc. Natl. Acad. Sci., vol. 28, pp. 535-537.
- Zadeh, L. (1965). ''Fuzzy sets'', Inf. Control, vol. 8, pp. 338-353.
- Zadeh, L. (1975). ''The concept of a linguistic variable and its application to approximate reasoning, Parts 1, 2, and 3,'' Inf. Sci., vol. 8, pp. 199-249, 301-357; vol. 9, pp. 43-80.
- Zimmermann, H. (1991). Fuzzy set theory and its applications, 2nd ed., Kluwer Academic, Dor- drecht, Germany.
- Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.
- Gill, A. (1976). Applied algebra for the computer sciences, Prentice Hall, Englewood Cliffs, NJ.
- Kandel, A. (1985). Fuzzy mathematical techniques with applications, Addison-Wesley, Menlo Park, CA.
- Klir, G. and Folger, T. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall, Englewood Cliffs, NJ.
- REFERENCES Bezdek, J. (1993). ''Editorial: Fuzzy models -what are they, and why?'' IEEE Trans. Fuzzy Syst., vol. 1, pp. 1-5.
- Filev, D. and Yager, R. (1991). ''A generalized defuzzification method under BAD distributions,'' Int. J. Intell. Syst., vol. 6, pp. 689-697.
- Hellendoorn, H. and Thomas, C. (1993). ''Defuzzification in fuzzy controllers,'' Intell. Fuzzy Syst., vol. 1, pp. 109-123.
- Klir, G. and Folger, T. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall, Englewood Cliffs, NJ.
- Klir, G. and Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications, Prentice Hall, Upper Saddle River, NJ.
- Lee, C. (1990). ''Fuzzy logic in control systems: fuzzy logic controller, Parts I and II,'' IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404-435.
- Sugeno, M. (1985). ''An introductory survey of fuzzy control,'' Inf. Sci., vol. 36, pp. 59-83.
- Yager, R. and Filev, D. (1993). ''SLIDE: A simple adaptive defuzzification method,'' IEEE Trans. Fuzzy Syst., vol. 1, pp. 69-78.
- Example 5.2 [Similar to Gill, 1976]. Consider the following four propositions:
- three propositions are all true; the fourth is false. In the first two, the conclusion 4 > 0 is true regardless of the truth of the hypothesis; in the third case both propositions are false, Clark, D. W. (1992). ''Computer illogic. . . ,'' Mirage Mag., University of New Mexico Alumni Association, Fall, pp. 12-13.
- Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.
- Franchella, M. (1995). ''L. E. J. Brouwer: Toward intuitionistic logic,'' Hist. Math., vol. 22, pp. 304-322.
- Gaines, B. (1976). ''Foundations of fuzzy reasoning,'' Int. J. Man Mach. Stud., vol. 8, pp. 623-688.
- Giles, R. (1976). ''Lukasiewicz logic and fuzzy theory,'' Int. J. Man Mach. Stud., vol. 8, pp. 313-327.
- Gill, A. (1976). Applied algebra for the computer sciences, Prentice Hall, Englewood Cliffs, NJ.
- Jang, J., Sun, C. and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Ist Edition, Pearson Education, Inc., Upper Saddle River, NJ.
- Kickert, W. (1979). ''An example of linguistic modelling: The case of Mulder's theory of power,'' in M. Gupta, R. Ragade, and R. Yager (eds.), Advances in fuzzy set theory and applications, Elsevier, Amsterdam, pp. 519-540.
- Klir, G. and Folger, T. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall, Englewood Cliffs, NJ.
- Kosko, B. (1992). Neural networks and fuzzy systems, Prentice Hall, Englewood Cliffs, NJ.
- Kreinovich, V. (2003). Personal discussion.
- Mamdani, E. and Assilian, S. (1975). ''An experiment in linguistic synthesis with a fuzzy logic controller,'' Int. J. Man Mach. Syst., vol. 7, pp. 1-13.
- Mamdani, E. H. (1976). ''Advances in linguistic synthesis of fuzzy controllers,'' Int. J. Man Mach. Stud., vol. 8, pp. 669-678.
- Mano, M. (1988). Computer engineering: Hardware design, Prentice Hall, Englewood Cliffs, NJ, p. 59.
- Mizumoto, M. and Zimmerman, H.-J. (1982). ''Comparison of fuzzy reasoning methods,'' Fuzzy Sets Syst., vol. 8, pp. 253-283.
- Osherson, D. and Smith, E. (1981). ''On the adequacy of prototype theory as a theory of concepts,'' Cognition, vol. 9, pp. 35-58.
- Rescher, N. (1969). Many-valued logic, McGraw-Hill, New York.
- Ross, T. (1995). Fuzzy logic with engineering applications, McGraw-Hill, New York.
- Sanchez, E. (1976). ''Resolution of composite fuzzy relation equations,'' Inf. Control, vol. 30, pp. 38-48.
- Sugeno, M. and Kang, G. (1988). ''Structure identification of fuzzy model,'' Fuzzy Sets Syst., vol. 28, pp. 15-33.
- Takagi, T. and Sugeno, M. (1985). ''Fuzzy identification of systems and its applications to modeling and control,'' IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132.
- Tsukamoto, Y. (1979). ''An approach to fuzzy reasoning method,'' in M. Gupta, R. Ragade, and R. Yager, (eds.), Advances in fuzzy set theory and applications, Elsevier, Amsterdam, pp. 137-149.
- Yager, R. R. (1983). ''On the implication operator in fuzzy logic,'' Inf. Sci., vol. 31, pp. 141-164.
- Yager, R. R. (1985). ''Strong truth and rules of inference in fuzzy logic and approximate reasoning,'' Cybern. Syst., vol. 16, pp. 23-63.
- Zadeh, L. (1972) ''A fuzzy-set-theoretic interpretation of linguistic hedges,'' J. Cybern., vol. 2, pp. 4-34.
- Zadeh, L. (1973). ''Outline of a new approach to the analysis of complex systems and decision processes,'' IEEE Trans. Syst. Man, Cybern., vol. 3, pp. 28-44.
- Zadeh, L. (1975a). ''The concept of a linguistic variable and its application to approximate reason- ing -I,'' Inf. Sci., vol. 8, pp. 199-249.
- Zadeh, L. (1975b). ''The concept of a linguistic variable and its application to approximate reason- ing -II,'' Inf. Sci., vol. 8, pp. 301-357.
- Zadeh, L. (1976). ''The concept of a linguistic variable and its application to approximate reason- ing -Part 3,'' Inf. Sci., vol. 9, pp. 43-80.
- Bremermann, H. (1976). ''Pattern recognition,'' in H. Bossel,S. Klaszko, and N. Müller (eds.), Systems theory in the social sciences, Birkhaeuser, Basel, pp. 116-159.
- Christensen, R. (1980). Entropy minimax sourcebook, vols. 1-4, and Fundamentals of inductive reasoning, Entropy Ltd., Lincoln, MA.
- De Luca, A. and Termini, S. (1972). ''A definition of a non-probabilistic entropy in the setting of fuzzy sets theory,'' Inf. Control, vol. 20, pp. 301-312.
- Dubois, D., and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.
- Einstein, A. (1922). ''Geometry and experience,'' in Sidelights of relativity, Methuen, London (English translation of 1921 speech to Prussian Academy).
- Forrest, S. (1993). ''Genetic algorithms: Principles of natural selection applied to computation,'' Science, vol. 261, pp. 872-878.
- Goldberg, D. (1989). Genetic algorithms, Addison-Wesley, New York.
- Hayashi, I., Nomura, H., Yamasaki, H. and Wakami, N. (1992). ''Construction of fuzzy inference rules by NDF and NDFL,'' Int. J. Approximate Reasoning, vol. 6, pp. 241-266.
- Hopfield, J. (1982). ''Neural networks and physical systems with emergent collective computational abilities,'' Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554-2558.
- Hopfield, J. and Tank, D. (1986). ''Computing with neural circuits: A model,'' Science, vol. 233, pp. 625-633.
- Karr, C. L., and Gentry, E. J. (1993). ''Fuzzy control of pH using genetic algorithms,'' IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 46-53.
- Kim, C. J. and Russel, B. D. (1993). ''Automatic generation of membership function and fuzzy rule using inductive reasoning,'' IEEE Trans., Paper 0-7803-1485-9/93.
- Kochen, M. and Badre, A. (1976). ''On the precision of adjectives which denote fuzzy sets,'' J. Cybern., vol. 4, no. 1, pp. 49-59.
- Lee, M., and Takagi, H. (1993). ''Integrating design stages of fuzzy systems using genetic algo- rithms,'' IEEE Trans., Paper 0-7803-0614-7/93.
- Luger, G., and Stubblefield, W. (1989). Artificial intelligence and the design of expert systems, Benjamin-Cummings, Redwood City, CA.
- Ross, T. (1995). Fuzzy logic with engineering applications, McGraw-Hill, New York.
- Saaty, T. (1974). ''Measuring the fuzziness of sets,'' J. Cybern., vol. 4, no. 4, pp. 53-61.
- Takagi, H. and Hayashi, I. (1991). ''NN-driven fuzzy reasoning,'' Int. J. Approximate Reasoning, vol. 5, pp. 191-212.
- Yager, R. and Filev, D. (1994). ''Template-based fuzzy systems modeling,'' Intell. Fuzzy Syst., vol. 2, no. 1, pp. 39-54.
- Brand, H. W. (1961). The fecundity of mathematical methods in economic theory, trans. Edwin Holstrom, D. Reidel, Dordrecht.
- Huang, Y., and Fan, L. (1993). ''A fuzzy logic-based approach to building efficient fuzzy rule-based expert systems,'' Comput. Chem. Eng., vol. 17, no. 2, pp. 188-192.
- Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and Application, Prentice Hall, Upper Saddle River, NJ.
- Lucero, J. (2004). ''Fuzzy systems methods in structural engineering'', PhD dissertation, Department of Civil Engineering, University of New Mexico, Albuquerque, NM.
- Ross, T. (1995). Fuzzy logic with engineering applications, McGraw-Hill, New York.
- Sugeno, M. (ed.). (1985). Industrial applications of fuzzy control, North-Holland, New York.
- Sugeno, M. and Yasukawa, T. (1993). ''A fuzzy-logic-based approach to qualitative modeling,'' IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31.
- Vadiee, N. (1993). ''Fuzzy rule-based expert systems -I and II,'' in M. Jamshidi, N. Vadiee, and T. Ross, (eds.), Fuzzy logic and control: software and hardware applications, Prentice Hall, Englewood Cliffs, NJ, chapters 4 and 5.
- Zadeh, L. (1975). ''The concept of a linguistic variable and its application to approximate reason- ing -I,'' Inf. Sci., vol. 8, pp. 199-249.
- A video monitor's CRT has a nonlinear characteristic between the illuminance output and the voltage input. This nonlinear characteristic is y = x 2.2 , where y is the illumination and x is the REFERENCES
- Bremermann, H. J. (1962). ''Quantum-theoretical Limitations of Data Processing,'' Abstracts of Short Communications, International Congress of Mathematics, Stockholm.
- Combs, W. E. and Andrews, J. E. (1998). ''Combinatorial Rule Explosion Eliminated by a Fuzzy Rule Configuration,'' IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 1-11.
- Devore, J. L. (1995). Probability and Statistics for Engineering and the Sciences, 4th ed., Duxbury Press, Belmont, CA.
- Jamshidi, M. (1994). Large-Scale Systems: Modeling, Control and Fuzzy Logic, Prentice Hall, Englewood Cliffs, NJ.
- Klir, G. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and applications, Prentice Hall, Englewood Cliffs, NJ.
- Lucero, J. (2004). ''Fuzzy Systems Methods in Structural Engineering,'' PhD dissertation, University of New Mexico, Dept. of Civil Engineering, Albuquerque, NM.
- Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Simon, D. (2000). ''Design and Rule Base Reduction of a Fuzzy Filter for the Estimation of Motor Currents,'' Int. J. Approximate Reasoning, vol. 25, pp. 145-167.
- Weinschenk, J. J., Combs, W. E., and Marks II, R. J. (2003). ''Avoidance of Rule Explosion by Mapping Fuzzy Systems to a Union Rule Configuration,'' The IEEE International Conference on Fuzzy Systems, pp. 43-48.
- Yam, Y. (1997). ''Fuzzy Approximation Via Grid Point Sampling and Singular Value Decomposi- tion,'' IEEE Trans. Syst., Man, Cybern. -Part B: Cybern., vol. 27, no. 6, pp. 933-951.
- Adams, T. (1994). ''Retaining structure selection with unequal fuzzy project-level objectives,'' J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 251-266.
- Baas, S. and Kwakernaak, H. (1977). ''Rating and ranking of multiple-aspect alternatives using fuzzy sets,'' Automatica, vol. 13, pp. 47-58.
- Bellman, R. and Zadeh, L. (1970). ''Decision making in a fuzzy environment,'' Manage. Sci., vol. 17, pp. 141-164.
- Bezdek, J., Spillman, B. and Spillman, R. (1978). ''A fuzzy relation space for group decision theory,'' Fuzzy Sets Syst., vol. 1, pp. 255-268.
- Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.
- Häage, C. (1978). ''Possibility and cost in decision analysis,'' Fuzzy Sets Syst., vol. 1, no. 2, pp. 81-86.
- Jain, R. (1976). ''Decision-making in the presence of fuzzy variables,'' IEEE Trans. Syst., Man, Cybern., vol. 6, no. 10, pp. 698-703.
- Jain, R. (1978). ''Decision-making in the presence of fuzziness and uncertainty,'' Proc. IEEE Conf. Decision Control, New Orleans, pp. 1318-1323.
- Klir, G. and Yuan, B. (1995). Fuzzy sets and fuzzy logic, Prentice Hall, Upper Saddle River, NJ.
- Maes, M. and Faber, M. (2004). ''Issues in utility modeling and rational decision making,'' Proc. 11th IFIP WG 7.5 Reliability and Optimization of Structural Systems, M. Maes and L. Huyse (eds.) Balkema Publishers, London, pp. 95-104.
- Okuda, T., Tanaka, H. and Asai, K. (1974). ''Decision making and information in fuzzy events,'' Bull. Univ. Osaka Prefect., Ser. A, vol. 23, no. 2, pp. 193-202.
- Okuda, T., Tanaka, H., and Asai, K. (1978). ''A formulation of fuzzy decision problems with fuzzy information, using probability measures of fuzzy events,'' Inf. Control, vol. 38, no. 2, pp. 135-147.
- Ross, T., Booker, J., and Parkinson, W. (2003). Fuzzy Logic and Probability Applications: Bridging the Gap, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Sakawa, M. (1993). Fuzzy sets and interactive multiobjective optimization, Plenum Press, New York.
- Shimura, M. (1973). ''Fuzzy sets concept in rank-ordering objects,'' J. Math. Anal. Appl., vol. 43, pp. 717-733.
- Tanaka, H., Okuda, T., and Asai, K. (1976). ''A formulation of fuzzy decision problems and its application to an investment problem,'' Kybernetes, vol. 5, pp. 25-30.
- Terano, T., Asai, K., and Sugeno, M. (1992). Fuzzy system theory and its applications, Academic Press, San Diego, CA.
- Tversky, A and Kahneman, D. (1974). ''Judgement under uncertainty: Heuristics and biases,'' Science, vol. 185, pp. 1124-1131.
- Von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economical Behavior, Princeton University Press, Princeton, NJ.
- Watson, S., Weiss, J., and Donnell, M. (1979). ''Fuzzy decision analysis,'' IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 1-9.
- Yager, R. (1981). ''A new methodology for ordinal multiobjective decisions based on fuzzy sets,'' Decis. Sci., vol. 12, pp. 589-600.
- Bellman, R., Kalaba, R., and Zadeh, L. (1966). ''Abstraction and pattern classification,'' J. Math. Anal. Appl., vol. 13, pp. 1-7.
- Bezdek, J. (1974). ''Numerical taxonomy with fuzzy sets,'' J. Math. Biol., vol. 1, pp. 57-71.
- Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithms, Plenum, New York.
- Bezdek, J. and Harris, J. (1978). ''Fuzzy partitions and relations: An axiomatic basis for clustering,'' Fuzzy Sets Syst., vol. 1, pp. 111-127.
- Bezdek, J., Grimball, N., Carson, J., and Ross, T. (1986). ''Structural failure determination with fuzzy sets,'' Civ. Eng. Syst., vol. 3, pp. 82-92.
- Dong, W. (1986). ''Applications of fuzzy sets theory in structural and earthquake engineering,'' PhD dissertation, Department of Civil Engineering, Stanford University, Stanford, CA.
- Duda, R., and Hart, R. (1973). Pattern classification and scene analysis, John Wiley & Sons, New York.
- Fu, K. S. (1982). Syntactic pattern recognition and applications, Prentice Hall, Englewood Cliffs, NJ.
- Fukunaga, K. (1972). Introduction to statistical pattern recognition, Academic Press, New York.
- Hopcroft, J. and Ullman, J. (1969). Formal languages and their relation to automata, Addison- Wesley, Reading, MA.
- Pal, S. and King, R. (1980). ''Image enhancement using fuzzy sets,'' Electron. Lett., vol. 16, pp. 376-378.
- Pal, S. and King, R. (1981). ''Image enhancement using smoothing with fuzzy sets,'' IEEE Trans. Syst., Man, Cybern., vol. SMC-11, pp. 494-501.
- Pal, S. and Majumder, D. (1986). In Fuzzy mathematical approach to pattern recognition, John Wiley & Sons, New York.
- Ross, T. (1995). Fuzzy Logic with Engineering Applications, McGraw-Hill, New York.
- Ross, T., Hasselman, T., and Chrostowski, J. (1993). ''Fuzzy set methods in assessing uncertainty in the modeling and control of space structures,'' J. Intell. Fuzzy Syst., vol. 1, no. 2, pp. 135-155.
- Ruspini, E. (1969). ''A new approach to clustering,'' Inf. Control, vol. 15, pp. 22-32.
- Ruspini, E. (1970). ''Numerical methods for fuzzy clustering,'' Inf. Sci., vol. 2, pp. 319-350.
- Ruspini, E. (1973a). ''New experimental results in fuzzy clustering,'' Inf. Sci., vol. 6, pp. 273-284.
- Ruspini, E. (1973b). ''A fast method for probabilistic and fuzzy cluster analysis using association measures,'' Proc. 6th Int. Conf. Syst. Sci., Hawaii, pp. 56-58.
- Tamura, S., Higuchi, S., and Tanaka, K. (1971). ''Pattern classification based on fuzzy relations,'' IEEE Trans. Syst., Man, Cybern., vol. 1, pp. 61-66.
- Wang, P. (1983). ''Approaching degree method,'' in Fuzzy sets theory and its applications, Science and Technology Press, Shanghai, PRC (in Chinese).
- Zadeh, L. (1971). ''Similarity relations and fuzzy orderings,'' Inf. Sci., vol. 3, pp. 177-200. REFERENCES
- Dong, W. and Shah, H. (1987). ''Vertex method for computing functions of fuzzy variables,'' Fuzzy Sets Syst., vol. 24, pp. 65-78.
- Dong, W., Shah, H., and Wong, F. (1985). ''Fuzzy computations in risk and decision analysis,'' Civ. Eng. Syst., vol. 2, pp. 201-208.
- Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.
- Givens, J. and Tahani, H. (1987). ''An improved method of performing fuzzy arithmetic for com- puter vision,'' Proceedings of North American Information Processing Society (NAFIPS), Purdue University, West Lafayette, IN, pp. 275-280.
- Wong, F. and Ross, T. (1985). ''Treatment of uncertainties in structural dynamics models,'' in F. Deyi and L. Xihui (eds.), Proceedings of the International Symposium on Fuzzy Mathematics in Earthquake Research, Seismological Press, Beijing.
- Yager, R. R. (1986). ''A characterization of the extension principle,'' Fuzzy Sets Syst., vol. 18, pp. 205-217.
- Zadeh, L. (1975). ''The concept of a linguistic variable and its application to approximate reasoning, Part I,'' Inf. Sci., vol. 8, pp. 199-249.
- Altrock, C., Arend, H., Krause, B., Steffens, C., and Behrens-Rommler, E. (1993). Customer-adaptive fuzzy control of home heating system, IEEE Press, Piscataway, NJ, pp. 115-119.
- Cox, E. (1993). ''Adaptive fuzzy systems,'' IEEE Spectrum, February, pp. 27-31.
- Egusa, Y., Akahori, H., Morimura, A., and Wakami, N. (1992). ''An electronic video camera image stabilizer operated on fuzzy theory,'' IEEE international conference on fuzzy systems, IEEE Press, San Diego, pp. 851-858.
- Kaufmann, A. and Gupta, M. M. (1985). Introduction to Fuzzy Arithmetic-Theory and Applications. Van Nostrand Reinhold, New York.
- Kiszka, J. B., Gupta, M. M., and Nikfrouk, P. N. (1985). ''Some properties of expert control sys- tems,'' in M. M. Gupta, A. Kendal, W. Bandler, and J. B. Kiszka (eds.), Approximate reasoning in expert systems, Amsterdam, Elsevier Science, pp. 283-306.
- Laviolette, M. and Seaman, Jr., J. W. (1992). ''Evaluating fuzzy representations of uncertainty,'' Math. Sci., vol. 17, pp. 26-41.
- Laviolette, M. and Seaman, Jr., J. W. (1994). ''The efficacy of fuzzy representations of uncertainty,'' IEEE Trans. Fuzzy Syst., vol. 2, pp. 4-15.
- Laviolette, M., Seaman, Jr., J. W., Barrett, J. D., and Woodall, W. H. (1995). ''A probabilistic and statistical view of fuzzy methods,'' Technometrics, vol. 37, no. 3, pp. 249-261.
- Loe, S. (1991). ''SGS-Thomson launches fuzzy-logic research push,'' Electron. World News, August 12, p. 1.
- Mamdani, E. (1974). ''Application of fuzzy algorithms for control of simple dynamic plant,'' Proc. IEEE, pp. 1585-1588.
- Mamdani, E. H. and Gaines, R. R. (eds.) (1981). Fuzzy reasoning and its applications, Academic Press, London.
- Mamzic, C. L. (ed.) (1995), Statistical Process Control, ISA Press, Research Triangle Park, NC.
- Meier, R., Nieuwland, J., Zbinden, A., and Hacisalihzade, S. (1992). ''Fuzzy logic control of blood pressure during anesthesia,'' IEEE Control Syst., December, pp. 12-17.
- Murrill, P. W. (1991). Fundamentals of Process Control Theory, 2nd ed., Instrument Society of America, Research Triangle Park, NC.
- Ogunnaike, B. A. and Ray, W. H. (1994). Process Dynamics, Modeling, and Control, Oxford Uni- versity Press, New York.
- Olsen R. M. (1961). Essentials of Engineering Fluid Mechanics, International Textbook, Scranton, PA. Pappas, C. and Mamdani, E. (1976). ''A fuzzy logic controller for a traffic junction,'' Research report, Queen Mary College, London.
- Parkinson, W. J. (2001). ''Fuzzy and probabilistic techniques applied to the chemical process industries,'' PhD dissertation, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM.
- Parkinson, J. and Ross, T. (2002). ''Control charts for statistical process control,'' in T. J. Ross, J. M. Booker, and W. J. Parkinson, (eds), Fuzzy Logic and Probability Applications: Bridging the Gap, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Passino, K. and Yurkovich, S. (1998). Fuzzy Control, Addison-Wesley, Menlo Park, CA.
- Phillips, C. L. and Harbor, R. D. (1996). Feedback Control Systems, 3rd ed., Prentice Hall, Englewood Cliffs, NJ.
- Quail, S. and Adnan, S. (1992). ''State of the art in household appliances using fuzzy logic,'' in J. Yen, R. Langari, and L. Zadeh (eds.), Proceedings of the second international workshop -industrial fuzzy control and intelligent systems, IEEE Press, College Station, TX, pp. 204-213.
- Raz, T. and Wang, J. (1990). ''Probabilistic and membership approaches in the construction of control charts for linguistic data,'' Prod. Plann. Control, vol. 1, pp. 147-157.
- Reid, T. (1990). ''The future of electronics looks 'fuzzy'; Japanese firms selling computer logic products,'' Washington Post, Financial Section, p. H-1.
- Rogers, M. and Hoshai, Y. (1990). ''The future looks 'fuzzy,' '' Newsweek, vol. 115, no. 22.
- Ross, T. (1995). Fuzzy Logic with Engineering Applications, McGraw-Hill, New York.
- Ross, T. J., Booker, J. M., and Parkinson, W. J. (eds.) (2002). Fuzzy Logic and Probability Applica- tions: Bridging the Gap, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Shewhart, Walter A. (1986). Statistical Method from the Viewpoint Economic of Quality Control, Dover, New York.
- Shingu, T. and Nishimori, E. (1989). ''Fuzzy-based automatic focusing system for compact cam- era,'' Proceedings of the third international fuzzy systems association congress, Seattle, WA, pp. 436-439.
- Shinskey, F. G. (1988). Process Control Systems -Applications, Design, and Tuning, 3rd ed., McGraw-Hill, New York.
- Sugeno, M. (ed.) (1985). Industrial application of fuzzy control, North-Holland, New York.
- Takagi, H. (1992). ''Survey: Fuzzy logic applications to image processing equipment,'' in J. Yen, R. Langari, and L. Zadeh (eds.), Proceedings of the second international workshop -industrial fuzzy control and intelligent systems, IEEE Press, College Station, TX, pp. 1-9.
- Vadiee, N. (1993). ''Fuzzy rule-based expert systems -I,'' in M. Jamshidi, N. Vadiee, and T. Ross (eds.), Fuzzy logic and control: software and hardware applications, Prentice Hall, Englewood Cliffs, NJ, pp. 51-85.
- Wang, J. and Raz, T. (1990). ''On the construction of control charts using linguistic variables,'' Int. J. Prod. Res., vol. 28, pp. 477-487.
- Wang, L. X. (1997). A course in fuzzy systems and control, Prentice Hall, Upper Saddle River, NJ.
- Wheeler, D. J. and Chambers, D. S. (1992). Understanding Statistical Process Control, 2nd ed., SPC Press, Knoxville, TN.
- Williams, Richard H. (1991). Electrical Engineering Probability, West, St. Paul, MN. REFERENCES
- Akai, T. (1994). Applied numerical methods for engineers, John Wiley & Sons, New York, chapter 10.
- Axelrod, R. (1976). Structure of Decision, Princeton University Press, Princeton, NJ.
- Cox, E. (1994). The fuzzy systems handbook, Academic Press Professional, Cambridge, MA. deNeufville, R. (1990). Applied systems analysis: engineering planning and technology management, McGraw-Hill, New York.
- Dubois, D. and Prade, H. (1980). Fuzzy sets and systems: Theory and applications, Academic Press, New York.
- Fuzzy Sets and Systems. C. Negoita, L. Zadeh, and H. Zimmerman (eds.), Elsevier Science, Amster- dam.
- Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning, Addison- Wesley, Reading, MA.
- Hillier, F. and Lieberman, G. (1980). Introduction to operations research, Holden-Day, San Francisco. IEEE Transactions on Fuzzy Systems. IEEE Press, New York. Intelligent and Fuzzy Systems. R. Langari (ed.) IOS Press, Amsterdam.
- Kardaras, D. and Karakostas, B. (1999). ''The use of fuzzy cognitive maps to simulate the information systems strategic planning process,'' Inf. Software Technol., vol. 41, pp. 197-210.
- Kikuchi, S. and Nanda, R. (1991). ''Fuzzy regression analysis using a neural network: Application to trip generation model,'' unpublished manuscript.
- Klir, G. and Folger, T. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall, Englewood Cliffs, NJ.
- Kosko, B. (1986). ''Fuzzy cognitive maps,'' Int. J. Man-Mach. Stud., vol. 24, pp. 65-75.
- Kosko, B. (1992). Neural Networks and Fuzzy Systems, Prentice-Hall, Englewood Cliff, NJ.
- Kosko, B. (1993). Fuzzy thinking, Hyperion Press, New York.
- Kosko, B. (1997). Fuzzy Engineering, Prentice Hall, Upper Saddle River, NJ.
- McNeill, D. and Freiberger, P. (1993). Fuzzy logic, Simon & Schuster, New York.
- Pelaez, C. E. and Bowles, J. B. (1995). ''Applying fuzzy cognitive-maps knowledge-representation to failure modes effects analysis,'' Proceedings Annual Reliability and Maintainability Symposium, IEEE, New York.
- Pelaez, C. E. and Bowles, J. B. (1996). ''Using fuzzy cognitive maps as a system model for failure modes and effects analysis,'' Inf. Sci., vol. 88, pp. 177-199.
- Ross, T., Booker, J., and Parkinson, J. (2003). Fuzzy Logic and Probability Applications: Bridging the Gap, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Sakawa, M. (1993). Fuzzy sets and interactive multiobjective optimization, Plenum Press, New York.
- Schmucker, K. (1984). Fuzzy sets, natural language computations, and risk analysis, Computer Science Press, Rockville, MD.
- Taber, R. (1994). ''Fuzzy cognitive maps model social systems,'' AI Expert, July, pp. 19-23.
- Tanaka, H., Uejima, S., and Asai, K. (1982). ''Linear regression analysis with fuzzy model,'' IEEE Trans. Syst., Man, Cybern., vol. 12, no. 6, pp. 903-907.
- Terano, T., Asai, K., and Sugeno, M. (1992). Fuzzy system theory and its applications, Academic Press, San Diego.
- Tsadiras, A. K. and Margaritis, K. G. (1996). ''Using certainty neurons in fuzzy cognitive maps,'' Neural Network World, vol. 4, pp. 719-728.
- Tsukamoto, Y. and Terano, T. (1977). ''Failure diagnosis by using fuzzy logic,'' Proceedings of the IEEE Conference an Decision Control, New Orleans. vol. 2, pp. 1390-1395.
- Vanderplaats, G. (1984). Numerical optimization techniques for engineering design with applications, McGraw-Hill, New York.
- Zadeh, L. (1972). ''On fuzzy algorithms,'' Memo UCB/ERL M-325, University of Califor- nia, Berkeley.
- Blockley, D. (1983). ''Comments on 'Model uncertainty in structural reliability,' by Ove Ditlevsen,'' J. Struct. Safety, vol. 1, pp. 233-235.
- Dempster, A. (1967). ''Upper and lower probabilities induced by a multivalued mapping,'' Ann. Math. Stat., vol. 38, pp. 325-339.
- Donald, S. (2003). ''Development of empirical possibility distributions in risk analysis,'' PhD dissertation, University of New Mexico, Department of Civil Engineering, Albuquerque, NM.
- Dubois, D. and Prade, H. (1988). Possibility theory, Plenum Press, New York.
- Gaines, B. (1978). ''Fuzzy and probability uncertainty logics,'' Inf. Control, vol. 38, pp. 154-169.
- Joslyn, C. (1997). ''Measurement of possibilistic histograms from interval data,'' Int. J. Gen. Syst., vol. 26, pp. 9-33.
- Klir, G. and Folger, T. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall, Englewood Cliffs, NJ.
- Klir, G. and Smith, R. (2001). ''On measuring uncertainty and uncertainty-based information: Recent developments,'' Ann. Math. Artif. Intell., vol. 32, pp. 5-33.
- Klir, G. and Wierman, M. (1999). Uncertainty Based Information: Elements of Generalized Informa- tion Theory, Physica-Verlag/Springer, Heidelberg.
- Klir, G. and Yuan, B. (1995). Fuzzy sets and fuzzy logic, Prentice Hall, Upper Saddle River, NJ.
- Shafer, G. (1976). A mathematical theory of evidence, Princeton University Press, Princeton, NJ.
- Wallsten, T. and Budescu, D. (1983). Manage. Sci., vol. 29, no. 2, p. 167.
- Yager, R. (1993). ''Aggregating fuzzy sets represented by belief structures,'' J. Intell. Fuzzy Syst., vol. 1, no. 3, pp. 215-224.
- Yager, R. and Filev, D. (1994). ''Template-based fuzzy systems modeling,'' J. Intell. Fuzzy Syst., vol. 2, no. 1, pp. 39-54.
- Zadeh, L. (1978). ''Fuzzy sets as a basis for a theory of possibility,'' Fuzzy Sets Syst., vol. 1, pp. 3-28.
- Zadeh, L. (1984). ''Review of the book A mathematical theory of evidence, by Glenn Shafer,'' AI Mag., Fall, pp. 81-83.
- Zadeh, L. (1986). ''Simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination,'' AI Mag., Summer, pp. 85-90.
- PROBLEMS 15.1. In structural dynamics a particular structure that has been subjected to a shock environment may be in either of the fuzzy sets ''damaged'' or ''undamaged,'' with a certain degree of REFERENCES
- Gaines, B. (1978). ''Fuzzy and probability uncertainty logics,'' Inf. Control, vol. 38, pp. 154-169.
- Rescher, N. (1969). Many-valued logic, McGraw-Hill, New York.
- 12. First maxima, z * = 2; last maxima, z * = 3; center of sums, z * = 2.5; mean max, z * = 2.5; centroid method, z * = 2.5; weighted average methods, z * = 2.5.
- 15. (ii) Defuzzified values using two centroids: centroid method, T * ≈ 80.2 • C; weighted average method, T * ≈ 79.75 • C.
- 2. 3 classes {x 1 , x 4 }, x 2 , x 3 11.
- C 1 = [0.991, 0.994, 0.025, 0.014], error = 0 11.
- C 1 = [0.972, 0.816, 0.247, 0.086], error = 0.25
- R 11 = 1, R 12 = 0.945, R 13 = 0.176, R 23 = 0.231, R 24 = 0.305. R 35 = 0.989
- 36. µ(s) = µ(a 8 ), for AC, S → I(a 6 , a 7 ), for DC, S → I(a 8 , A) 11.38. Scaling the pixel values between 0 and 1 by dividing by 255 we get the following: row 1 = 0.86, 0.12, 0.04, 0.06, 0.98; row 2 = 0.80, 0.90, 0, 0.94, 0.90; row 3 = 0.88, EXAMPLES IN (PAGE NUMBERS), Aerospace Engineering: 262, 449, 486, 577 Biotechnology: 55, 61, 69, 99, 138, 365, 589
- Chemical/Petroleum Engineering: 39, 105, 111, 158, 330, 334, 375, 384, 390, 493, 498, 500, 503
- Civil Engineering: 31, 32, 65, 67, 73, 74, 122, 131, 140, 238, 323, 327, 367, 388, 398, 541, 592, 596, 599
- Electrical Engineering: 62, 257, 338, 415, 418, 427, 579, 585 Environmental Engineering: 507, 513, 547
- Mechanical Engineering: 38, 60, 132, 133, 153, 404, 453
- PROBLEMS IN (END-OF-CHAPTER PROBLEM NUMBERS), Aerospace Engineering: 2.9, 10.5, 15.4 Biotechnology: 3.21, 5.27, 8.5, 11.3, 11.7, 11.14, 15.6
- Civil Engineering: 1.8, 1.12, 1.14, 2.2, 2.5, 2.6, 2.10, 3.3, 3.8, 3.16, 3.19, 3.20, 3.24, 4.12, 5.18, 5.24, 7.6, 8.4, 9.6, 10.7, 10.18, 10.20, 11.4, 11.5, 12.13, 12.15, 14.2, 14.3, 15.1, 15.8
- Geomatics: 3.23, 5.16, 5.25, 10.6, 10.11, 10.17, 11.6, 11.26, 11.29, 13.8 Materials Science: 4.9, 14.4
- Mechanical Engineering: 1.2, 2.1, 2.13, 3.15, 5.15, 5.28, 5.30, 5.34, 5.35, 10.10, 11.12, 12.7, 12.8, 13.1, 13.2, 13.4, 14.7, 15.3
- Miscellaneous Technologies: 1.1, 1.5, 1.16, 3.12, 3.13, 3.25, 3.26, 4.1, 4.4, 4.5, 4.6, 4.10, 5.7, 5.12, 5.13, 5.20, 5.23, 6.4, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 7.1, 7.2, 7.3, 7.4, 7.5, 7.7, 9.1, 9.2, 9.5, 9.8, 9.10, 10.3, 10.8, 10.13, 10.21, 11.1, 11.2, 11.24, 11.25, 11.32, 11.33, 13.9, 14.8, 14.10, 15.2, 15.12