Determination of the deceleration parameter from supernovae data
2005, Physical Review D
https://doi.org/10.1103/PHYSREVD.72.061302Abstract
Supernovae searches have shown that a simple matter-dominated and decelerating universe should be ruled out. However a determination of the present deceleration parameter q 0 through a simple kinematical description is not exempt of possible drawbacks. We show that, with a time dependent equation of state for the dark energy, a bias is present for q 0 : models which are very far from the so-called Concordance Model can be accommodated by the data and a simple kinematical analysis can lead to wrong conclusions. We present a quantitative treatment of this bias and we present our conclusions when a possible dynamical dark energy is taken into account.
FAQs
AI
What recent findings support the existence of Dark Energy in the universe?
The analysis by Riess et al. in 2019 indicates a current acceleration phase with q₀ ≈ -0.7, suggesting the presence of Dark Energy. Their findings involve measurements from 156 SNe, including those beyond z > 1.3.
How does the methodology for q(z) affect deceleration parameter estimation?
The study reveals that different parametrizations of q(z), such as linear vs. dynamical models, significantly influence the estimated q₀. For instance, adopting a linear approach led to biases, yielding q₀ = -0.57 ± 0.17.
What role does redshift play in estimating the transition from deceleration to acceleration?
The extraction of transition redshift zₜ, found to be 0.34 +0.12 -0.06, is highly dependent on the chosen parametrization for the equation of state w(z). The current data suggests this value is less robust than the corresponding q₀ estimation.
How might biases in supernova data impact the understanding of cosmic expansion?
The research identifies a Biased Zone where kinematical fits converge but yield q₀ values significantly different from fiducial values, sometimes exceeding the statistical error. This leads to potential misinterpretations regarding the sign and magnitude of cosmic deceleration.
What are the implications of varying priors on the density parameter ΩM?
Adopting stronger priors on ΩM consistently pushes w₀ towards -1, whereas weaker priors result in w₀ values lower than -1. This discrepancy highlights the sensitivity of parameter estimations to prior assumptions.
References (27)
- R.A. Knop et al. Astrophys.J. 598, 102 (2003)
- A.G. Riess et al., Astrophys.J. 607, 665 (2004)
- T. Padmanabhan, Current Science, in press, astro-ph/0411044
- I. Maor, R. Brustein and P.J. Steinhardt, Phys.Rev.Lett. 86, 6 (2001) ;
- I. Maor et al., Phys.Rev. D65, 123003 (2002)
- J. Weller and A. Albrecht, Phys.Rev. D65, 103512 (2002)
- B. F. Gerke and G. Efstathiou, MNRAS 335, 33 (2002)
- E. Linder, astro-ph/0406189
- J.-M. Virey et al., Phys.Rev. D70, 043514 (2004)
- J.-M. Virey et al., Phys.Rev. D70, 121301(R) (2004)
- M. Chevallier and D. Polarski, Int.J.Mod.Phys. D10, 213 (2001)
- E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003)
- Y. Wang and M. Tegmark, Phys.Rev.Lett. 92, 241302 (2004)
- U. Seljak et al., astro-ph/0407372
- T.R. Choudurhy and T. Padmanabhan, As- tron.Astrophys. 429 807 (2005)
- D. Rapetti, S.W. Allen and J. Weller, astro-ph/0409574
- A. Upadhye, M. Ishak, P.J. Steinhardt, astro-ph/0411803
- C. Armendariz-Picon et al., Phys.Rev.Lett.85, 4438 (2000);
- Phys.Rev.D63, (2001) 103510
- R. Caldwell, Phys.Lett.B545, 23 (2002)
- S.M. Carrol, A. De Felice and M. Trodden, astro-ph/0408081
- D.A. Dicus and W. W Repko, Phys. Rev. D70, 083527 (2004)
- S. Hannestad and E. Mörstell, J. Cosmol. Astropart.Phys 09, (2004) 001.
- P.S. Corasaniti et al., Phys. Rev. D70, 0830006 (2004)
- B.A. Basset, P.S. Corasaniti and M. Kunz, Astrophys.J. 617 L1-L4 (2004)
- see http://snap.lbl.gov or E. V. Linder, astro-ph/0406186
- M. Ishak, astro-ph/0501594