Oscillating Instantons as Homogeneous Tunneling Channels
2013, International Journal of Modern Physics A
https://doi.org/10.1142/S0217751X13500826Abstract
In this paper, we study Einstein gravity with a minimally coupled scalar field accompanied with a potential, assuming an O(4) symmetric metric ansatz. We call an Euclidean instanton is to be an oscillating instanton, if there exists a point where the derivative of the scale factor and the scalar field vanish at the same time. Then, we can prove that the oscillating instanton can be analytically continued, both as inhomogeneous and homogeneous tunneling channels. Here, we especially focus on the possibility of a homogeneous tunneling channel. For the existence of such an instanton, we have to assume three things: (1) there should be a local maximum and the curvature of the maximum should be sufficiently large, (2) there should be a local minimum and (3) the other side of the potential should have a sufficiently deeper vacuum. Then, we can show that there exists a number of oscillating instanton solutions and their probabilities are higher compared to the Hawking–Moss instantons. We a...
References (33)
- A. H. Guth, Phys. Rev. D 23, 347 (1981);
- K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).
- A. H. Guth and E. J. Weinberg, Nucl. Phys. B 212, 321 (1983).
- D. H. Lyth and E. D. Stewart, Phys. Rev. D 53, 1784 (1996) [arXiv:hep-ph/9510204].
- R. Easther, J. T. Giblin, E. A. Lim, W. I. Park and E. D. Stewart, JCAP 0805, 013 (2008) [arXiv:0801.4197 [astro-ph]].
- L. Susskind, arXiv:hep-th/0302219.
- S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, Phys. Rev. D 68, 046005 (2003) [arXiv:hep-th/0301240].
- S. Chang, M. Kleban and T. S. Levi, JCAP 0804, 034 (2008) [arXiv:0712.2261 [hep-th]];
- M. Kleban, Class. Quant. Grav. 28, 204008 (2011) [arXiv:1107.2593 [astro-ph.CO]].
- J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).
- J. B. Hartle, S. W. Hawking and T. Hertog, Phys. Rev. Lett. 100, 201301 (2008) [arXiv:0711.4630 [hep-th]].
- J. B. Hartle, S. W. Hawking and T. Hertog, Phys. Rev. D 77, 123537 (2008) [arXiv:0803.1663 [hep-th]].
- S. R. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980).
- S. W. Hawking and I. G. Moss, Phys. Lett. B 110, 35 (1982).
- A. D. Linde, D. A. Linde and A. Mezhlumian, Phys. Rev. D 49, 1783 (1994) [gr-qc/9306035].
- K. M. Lee and E. J. Weinberg, Phys. Rev. D 36, 1088 (1987).
- W. Lee, B. H. Lee, C. H. Lee and C. Park, Phys. Rev. D 74, 123520 (2006) [arXiv:hep-th/0604064];
- B. H. Lee, C. H. Lee, W. Lee, S. Nam and C. Park, Phys. Rev. D 77, 063502 (2008) [arXiv:0710.4599 [hep-th]];
- B. H. Lee, W. Lee and D. Yeom, JCAP 1101, 005 (2011) [arXiv:1006.3127 [gr-qc]];
- H. Kim, B. H. Lee, W. Lee, Y. J. Lee and D. Yeom, Phys. Rev. D 84, 023519 (2011) [arXiv:1011.5981 [hep-th]].
- D. Hwang and D. Yeom, Class. Quant. Grav. 28, 155003 (2011) [arXiv:1010.3834 [gr-qc]];
- D. Yeom, arXiv:0912.0068 [gr-qc];
- B. -H. Lee and D. Yeom, arXiv:1111.0139 [gr-qc].
- B. -H. Lee, W. Lee, C. Oh, D. Ro and D. Yeom, arXiv:1204.1521 [hep-th].
- D. Hwang, H. Sahlmann and D. Yeom, Class. Quant. Grav. 29, 095005 (2012) [arXiv:1107.4653 [gr-qc]].
- D. Hwang, B. -H. Lee, H. Sahlmann and D. Yeom, arXiv:1203.0112 [gr-qc].
- J. C. Hackworth and E. J. Weinberg, Phys. Rev. D 71, 044014 (2005) [hep-th/0410142].
- A. R. Brown and E. J. Weinberg, Phys. Rev. D 76, 064003 (2007) [arXiv:0706.1573 [hep-th]].
- B. -H. Lee, C. H. Lee, W. Lee and C. Oh, Phys. Rev. D 85, 024022 (2012) [arXiv:1106.5865 [hep-th]].
- J. J. Halliwell, Nucl. Phys. B 266, 228 (1986);
- J. J. Blanco-Pillado, D. Schwartz-Perlov and A. Vilenkin, JCAP 0912, 006 (2009) [arXiv:0904.3106 [hep-th]].
- L. Battarra, G. Lavrelashvili and J. -L. Lehners, Phys. Rev. D 86, 124001 (2012) [arXiv:1208.2182 [hep-th]].
- S. R. Coleman, Nucl. Phys. B 298, 178 (1988).