Academia.eduAcademia.edu

Outline

Collective edge modes of a quantum Hall ferromagnet in graphene

2012, Physical Review B

https://doi.org/10.1103/PHYSREVB.86.125404

Abstract

We derive an effective field-theoretical model for the one-dimensional collective mode associated with a domain wall in a quantum Hall ferromagnetic state, as realized in confined graphene systems at zero filling. To this end, we consider the coupling of a quantum spin ladder forming near a kink in the Zeeman field to the spin fluctuations of a neighboring spin polarized two-dimensional environment. It is shown, in particular, that such coupling may induce anisotropy of the exchange coupling in the legs of the ladder. Furthermore, we demonstrate that the resulting ferromagnetic spin-1/2 ladder, subject to a kinked magnetic field, can be mapped to an antiferromagnetic spin chain at zero magnetic field.

References (29)

  1. R.E. Prange and S. M. Girvin, eds., The Quantum Hall Effect (Springer-Verlag, New York, 1990).
  2. S. Das Sarma and A. Pinczuk, eds., Perspectives in Quan- tum Hall Effects (John Wiley & Sons, 1997).
  3. D.H. Lee and C.L. Kane, Phys. Rev. Lett. 64, 1313 (1990).
  4. S.L. Sondhi, A.Karlhede, S.A. Kivelson and E. H. Rezayi, Phys. Rev. B 47, 16419 (1993).
  5. H.A. Fertig, L Brey, R. Côté, A.H. MacDonald, Phys. Rev. B 50, 11018 (1994).
  6. K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDon- ald, L. Zheng, D. Yoshioka and S.-C. Zhang, Phys. Rev. B 51, 5138 (1995).
  7. S.E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West and R. Tycko, Phys. Rev. Lett. 74, 5112 (1995).
  8. D.R. Leadley, R. J. Nicholas, D. K. Maude, A. N. Utjuzh, J. C. Portal, J. J. Harris and C. T. Foxon, Phys. Rev. Lett. 79, 4246 (1997).
  9. H. A. Fertig and L. Brey, Phys. Rev. Lett. 97, 116805 (2006).
  10. Y. Barlas, R. Cote, K. Nomura, and A. H. MacDonald, Phys. Rev. Lett. 101, 097601 (2008).
  11. R. Coté, J.-F. Jobidon and H. A. Fertig, Phys. Rev. B 78, 085309 (2008).
  12. Y. Zhao, P. Cadden-Zimansky, Z. Jiang and P. Kim, Phys. Rev. Lett. 104, 066801 (2010).
  13. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009), and references therein.
  14. D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim and L. S. Levitov, Phys. Rev. Lett. 98, 196806 (2007).
  15. J. G. Checkelsky, L. Li and N. P. Ong, Phys. Rev. Lett. 100, 206801 (2008);
  16. J. G. Checkelsky, L. Li and N. P. Ong, Phys. Rev. B 79, 115434 (2009).
  17. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer and P. Kim, Phys. Rev. Lett. 96, 136806 (2006).
  18. Y. Zhao, P. Cadden-Zimansky, F. Ghahari and P. Kim, arXive:1201.4434.
  19. E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006).
  20. E. McCann, Phys. Rev. B 74, 161403 (2006).
  21. L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
  22. D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96, 176803 (2006).
  23. V. Mazo, E. Shimshoni and H. A. Fertig, Phys. Rev. B 84, 045405 (2011).
  24. S. Wu, M. Killi and A. Paramekanti, Phys. Rev. B 85, 195404 (2012).
  25. C.-W. Huang, E. Shimshoni and H. A. Fertig, Phys. Rev. B 85, 205114 (2012).
  26. M. Killi, T.-C. Wei, I. Affleck and A. Paramekanti, Phys. Rev. Lett. 104, 216406 (2010).
  27. E. Shimshoni, H. A. Fertig and G. V. Pai, Phys. Rev. Lett. 102, 206408 (2009).
  28. A. Auerbach, Interacting Electrons and Quantum Mag- netism (Springer-Verlag, New York, 1994).
  29. T. Giamarchi, Quantum Physics in One Dimension, (Ox- ford, New York, 2004).