Predicting Complexity Perception of Real World Images
2016, PLOS ONE
https://doi.org/10.1371/JOURNAL.PONE.0157986Abstract
The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images.
References (56)
- Forsythe A, Sheehy N, Sawey M. Measuring icon complexity: An automated analysis. Behavior Research Methods, Instruments, & Computers. 2003; 35(2):334-342. doi: 10.3758/BF03202562
- Reinecke K, Yeh T, Miratrix L, Mardiko R, Zhao Y, Liu J, et al. Predicting users' first impressions of web- site aesthetics with a quantification of perceived visual complexity and colorfulness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM; 2013. p. 2049-2058.
- Ramanarayanan G, Bala K, Ferwerda JA, Walter B. Dimensionality of visual complexity in computer graphics scenes. In: Electronic Imaging 2008. International Society for Optics and Photonics; 2008. p. 68060E-68060E.
- Wei B, Guan T, Duan L, Yu J, Mao T. Wide area localization and tracking on camera phones for mobile augmented reality systems. Multimedia Systems. 2015; 21(4):381-399. doi: 10.1007/s00530-014- 0364-2
- Yaghmaee F, Jamzad M. Estimating watermarking capacity in gray scale images based on image com- plexity. EURASIP Journal on Advances in Signal Processing. 2010; 2010:8. doi: 10.1155/2010/851920
- Perkiö J, Hyvärinen A. Modelling image complexity by independent component analysis, with applica- tion to content-based image retrieval. In: Artificial Neural Networks-ICANN 2009. Springer; 2009. p. 704-714.
- Guan T, Wang Y, Duan L, Ji R. On-Device Mobile Landmark Recognition Using Binarized Descriptor with Multifeature Fusion. ACM Transactions on Intelligent Systems and Technology (TIST). 2015; 7 (1):12.
- Zhang Y, Guan T, Duan L, Wei B, Gao J, Mao T. Inertial sensors supported visual descriptors encoding and geometric verification for mobile visual location recognition applications. Signal Processing. 2015; 112:17-26. doi: 10.1016/j.sigpro.2014.08.029
- Wei B, Guan T, Yu J. Projected residual vector quantization for ANN search. MultiMedia, IEEE. 2014; 21(3):41-51. doi: 10.1109/MMUL.2013.65
- Huahui Wu MC, Kinicki R. A study of video motion and scene complexity. In: Tech. Rep. WPI-CS-TR- 06-19, Worcester Polytechnic Institute; 2006.
- Peters RA, Strickland RN. Image complexity metrics for automatic target recognizers. In: Automatic Target Recognizer System and Technology Conference; 1990. p. 1-17.
- Xu J, Jiang M, Wang S, Kankanhalli MS, Zhao Q. Predicting human gaze beyond pixels. Journal of vision. 2014; 14(1):28. doi: 10.1167/14.1.28 PMID: 24474825
- Zhao Q, Koch C. Advances in Learning Visual Saliency: From Image Primitives to Semantic Contents. In: Neural Computation, Neural Devices, and Neural Prosthesis. Springer; 2014. p. 335-360.
- Donderi DC. Visual complexity: a review. Psychological Bulletin. 2006; 132(1):73. doi: 10.1037/0033- 2909.132.1.73 PMID: 16435958
- Marin MM, Leder H. Examining Complexity across Domains: Relating Subjective and Objective Mea- sures of Affective Environmental Scenes, Paintings and Music. PLoS ONE. 2013; 8(8):e72412. doi: 10. 1371/journal.pone.0072412 PMID: 23977295
- Kolmogorov AN. Three approaches to the quantitative definition ofinformation'. Problems of information transmission. 1965; 1(1):1-7.
- Snodgrass JG, Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of experimental psychology: Human learning and memory. 1980; 6(2):174.
- Heaps C, Handel S. Similarity and features of natural textures. Journal of Experimental Psychology: Human Perception and Performance. 1999; 25(2):299.
- Birkhoff GD. Collected mathematical papers. New York; 1950.
- Forsythe A. Visual Complexity: Is That All There Is? In: Engineering Psychology and Cognitive Ergo- nomics. Springer; 2009. p. 158-166.
- Cardaci M, Di Gesù V, Petrou M, Tabacchi ME. On the evaluation of images complexity: A fuzzy approach. In: Fuzzy Logic and Applications. Springer; 2006. p. 305-311.
- Palumbo L, Ogden R, Makin AD, Bertamini M. Examining visual complexity and its influence on per- ceived duration. Journal of vision. 2014; 14(14):3. doi: 10.1167/14.14.3 PMID: 25487112
- Chacon MIM, Aguilar LED, Delgado AS. Fuzzy adaptive edge definition based on the complexity of the image. In: 10 th IEEE International Conference on Fuzzy Systems; 2001. p. 675-678.
- Mario I, Chacon M, Alma D, Corral S. Image complexity measure: a human criterion free approach. In: Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the North American. IEEE; 2005. p. 241-246.
- Yin K, Wang L, Guo Y. Fusing Multiple Visual Features for Image Complexity Evaluation. In: Advances in Multimedia Information Processing-PCM 2013. Springer; 2013. p. 308-317.
- Rigau J, Feixas M, Sbert M. An information-theoretic framework for image complexity. In: Proceedings of the First Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imag- ing. Eurographics Association; 2005. p. 177-184.
- Rosenholtz R, Li Y, Nakano L. Measuring visual clutter. Journal of Vision. 2007; 7(2):17. doi: 10.1167/ 7.2.17 PMID: 18217832
- Mack M, Oliva A. Computational estimation of visual complexity. In: the 12th Annual Object, Perception, Attention, and Memory Conference; 2004.
- Chikhman V, Bondarko V, Danilova M, Goluzina A, Shelepin Y. Complexity of images: Experimental and computational estimates compared. Perception. 2012; 41:631-647. doi: 10.1068/p6987 PMID: 23094454
- Oliva A, Mack ML, Shrestha M. Identifying the Perceptual Dimensions of Visual Complexity of Scenes. In: Proc. 26th Annual Meeting of the Cognitive Science Society; 2004.
- Purchase HC, Freeman E, Hamer J. Predicting Visual Complexity. In: Proceedings of the 3rd Interna- tional Conference on Appearance, Edinburgh, UK; 2012. p. 62-65.
- Cavalcante A, Mansouri A, Kacha L, Barros AK, Takeuchi Y, Matsumoto N, et al. Measuring street- scape complexity based on the statistics of local contrast and spatial frequency. PLoS ONE. 2014; 9 (2). doi: 10.1371/journal.pone.0087097
- Ciocca G, Corchs S, Gasparini F, Bricolo E, Tebano R. Does color infuence image complexity percep- tion? In: Fifth IAPR Computational Color Imaging Workshop (CCIW'15). vol. 9016 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg; 2015. p.
- Guo X, Asano CM, Asano A, Kurita T, Li L. Analysis of texture characteristics associated with visual complexity perception. Optical review. 2012; 19(5):306-314. doi: 10.1007/s10043-012-0047-1
- Ciocca G, Corchs S, Gasparini F. Complexity Perception of Texture Images. In: Murino V, Puppo E, Sona D, Cristani M, Sansone C, editors. New Trends in Image Analysis and Processing-ICIAP 2015
- Workshops. vol. 9281 of Lecture Notes in Computer Science. Springer International Publishing; 2015. p. 119-126.
- Heaps C, Handel S. Similarity and features of natural textures. Journal of Experimental Psychology: Human Perception and Performance. 1999; 25(2):299.
- Guo X, Kurita T, Asano CM, Asano A. Visual complexity assessment of painting images. In: Image Pro- cessing (ICIP), 2013 20th IEEE International Conference on. IEEE; 2013. p. 388-392.
- J K, R E. Particle swarm optimization. In: Proc IEEE Int Conf Neural Networks. vol. 4; 1995. p. 1942- 1948.
- Bianco S, Schettini R. Two new von Kries based chromatic adaptation transforms found by numerical optimization. Color Research & Application. 2010; 35(3):184-192. doi: 10.1002/col.20573
- Yu CP, Samaras D, Zelinsky GJ. Modeling visual clutter perception using proto-object segmentation. Journal of vision. 2014; 14(7):4. doi: 10.1167/14.7.4 PMID: 24904121
- Sheik H, Wang Z, Cormakc L, Bovik A. In: LIVE Image Quality Assessment Database Release 2. http:// live.ece.utexas.edu/research/quality; 2006.
- Sheikh HR, Sabir MF, Bovik AC. A statistical evaluation of recent full reference image quality assess- ment algorithms. Image Processing, IEEE Transactions on. 2006; 15(11):3440-3451. doi: 10.1109/ TIP.2006.881959
- Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to struc- tural similarity. Image Processing, IEEE Transactions on. 2004; 13(4):600-612. doi: 10.1109/TIP.2003. 819861
- Corchs S, Gasparini F, Schettini R. No Reference Image Quality classification for JPEG-Distorted Images. Digital Signal Processing. 2014; 30:86-100. doi: 10.1016/j.dsp.2014.04.003
- MIT Media Lab, Vision texture homepage, http://vismod.media.mit.edu/vismod/imagery/VisionTexture/.
- Cusano C, Napoletano P, Schettini R. Evaluating color texture descriptors under large variations of controlled lighting conditions. Journal of the Optical Society of America A. 2016 1; 33(1):17-30. doi: 10. 1364/JOSAA.33.000017
- Freedman DA. Statistical models: theory and practice. Cambridge University Press; 2009.
- Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on. 1973;( 6):610-621. doi: 10.1109/TSMC.1973.4309314
- Corchs S, Gasparini F, Schettini R. Grouping strategies to improve the correlation between subjective and objective image quality data. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics; 2013. p. 86530D-86530D.
- Corchs S, Gasparini F, Schettini R. No reference image quality classification for JPEG-distorted images. Digital Signal Processing. 2014; 30:86-100. doi: 10.1016/j.dsp.2014.04.003
- Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2002; 24(5):603-619. doi: 10.1109/34.1000236
- Hasler D, Suesstrunk SE. Measuring colorfulness in natural images. In: Electronic Imaging 2003. Inter- national Society for Optics and Photonics; 2003. p. 87-95.
- Artese MT, Ciocca G, Gagliardi I. Good 50x70 Project: A portal for Cultural And Social Campaigns. In: Archiving Conference. vol. 2014. Society for Imaging Science and Technology; 2014. p. 213-218.
- Solli M, Lenz R. Color harmony for image indexing. In: Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE; 2009. p. 1885-1892.
- Brodatz P. Textures: a photographic album for artists and designers. Dover Pubns; 1966.