Automated conceptual model clustering: a relator-centric approach
Software and Systems Modeling
https://doi.org/10.1007/S10270-021-00919-5Abstract
In recent years, there has been a growing interest in the use of reference conceptual models to capture information about complex and sensitive business domains (e.g., finance, healthcare, space). These models play a fundamental role in different types of critical semantic interoperability tasks. Therefore, domain experts must be able to understand and reason with their content. In other words, these models need to be cognitively tractable. This paper contributes to this goal by proposing a model clustering technique that leverages on the rich semantics of ontology-driven conceptual models (ODCM). In particular, we propose a formal notion of Relational Context to guide the automated clusterization (or modular breakdown) of conceptual models. Such Relational Contexts capture all the information needed for understanding entities "qua players of roles" in the scope of an objectified (reified) relationship (relator). The paper also presents computational support for automating the identification of Relational Contexts and this modular breakdown procedure. Finally, we report the results of an empirical study assessing the cognitive effectiveness of this approach. Keywords Ontology-driven conceptual modeling • Complexity management in conceptual modeling • Conceptual model clustering • OntoUML B Giancarlo Guizzardi
References (57)
- Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object- oriented model automatic clustering. Data Knowl. Eng. 20(2), 87-117 (1996)
- Algergawy, A., Babalou, S., Klan, F., König-Ries, B.: Ontology modularization with OAPT. J. Data Semant. 9(2), 53-83 (2020)
- Allen, G.N., March, S.T.: The effects of state-based and event- based data representation on user performance in query formulation tasks. MIS Q. 30, 269-290 (2006)
- Almeida, J.P.A., Falbo, R.A., Guizzardi, G.: Events as entities in ontology-driven conceptual modeling. In: Laender, A.H.F., Pernici, B., Lim, E.P., de Oliveira, J.P.M. (eds.) Conceptual Modeling. ER 2019, pp. 469-483. Springer, Cham (2019)
- Almeida, J.P.A., Guizzardi, G., Falbo, R.A., Sales, T.P.: gUFO: a lightweight implementation of the Unified Foundational Ontology (UFO). http://purl.org/nemo/doc/gufo
- Amato, F., De Santo, A., Moscato, V., Persia, F., Picariello, A., Poccia, S.R.: Partitioning of ontologies driven by a structure-based approach. In: Proceedings of the 2015 IEEE 9th International Con- ference on Semantic Computing (IEEE ICSC 2015), pp. 320-323. IEEE (2015)
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25-29 (2000)
- Baldoni, M., Boella, G., van der Torre, I.L.: Interaction between objects in powerJava. J. Object Technol. 6(2), 7-12 (2003)
- Bennett, M.: The financial industry business ontology: best practice for big data. J. Bank. Regul. 14(3), 255-268 (2013)
- Biddle, B.J.: Recent developments in role theory. Annu. Rev. Sociol. 12(1), 67-92 (1986)
- Bork, D., Garmendia, A., Wimmer, M.: Towards a multi-objective modularization approach for entity-relationship models. In: ER Forum, Demo and Posters 2020, pp. 45-58. CEUR-WS (2020)
- Castano, S., De Antonellis, V., Fugini, M.G., Pernici, B.: Concep- tual schema analysis: techniques and applications. ACM Trans. Database Syst. 23(3), 286-333 (1998)
- Chen, J., Alghamdi, G., Schmidt, R.A., Walther, D., Gao, Y.: Ontol- ogy extraction for large ontologies via modularity and forgetting. In: Proceedings of the 10th International Conference on Knowl- edge Capture, pp. 45-52 (2019)
- Detoni, A.A., Miranda, G.M., Renault, L.D., Falbo, R.A., Almeida, J.P.A., Guizzardi, G., Barcellos, M.P.: Exploring the role of enter- prise architecture models in the modularization of an ontology network: a case in the public security domain. In: 2017 IEEE 21st International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 117-126. IEEE (2017)
- El Ghosh, M., Naja, H., Abdulrab, H., Khalil, M.: Application of ontology modularization for building a criminal domain ontology. In: AI Approaches to the Complexity of Legal Systems, pp. 394- 409. Springer (2015)
- Feldman, P., Miller, D.: Entity model clustering: structuring a data model by abstraction. Comput. J. 29(4), 348-360 (1986)
- Figueiredo, G., Duchardt, A., Hedblom, M.M., Guizzardi, G.: Breaking into pieces: an ontological approach to conceptual model complexity management. In: 2018 12th International Conference on Research Challenges in Information Science (RCIS), pp. 1-10 (2018). https://doi.org/10.1109/rcis.2018.8406642
- Fillmore, C.J.: Frame semantics. In: Geeraerts, D. (ed.) Cognitive linguistics: basic readings, pp. 373-400. Mouton de Gruyter, Berlin (2006). https://doi.org/10.1515/9783110199901.373
- Francalanci, C., Pernici, B.: Abstraction levels for entity- relationship schemas. In: Proceedings of 13th ER, pp. 456-473. Springer (1994)
- Garcia, A.C., Tiveron, L., Justel, C.M., Cavalcanti, M.C.: Apply- ing graph partitioning techniques to modularize large ontologies. In: Joint V Seminar on Ontology Research in Brazil and VII International Workshop on Metamodels, Ontologies and Seman- tic Technologies. ONTOBRAS-MOST 2012, vol. 938, pp. 72-83. CEUR-WS (2012)
- Gonçalves, B., Guizzardi, G., Pereira Filho, J.G.: Using an ECG reference ontology for semantic interoperability of ECG data. J. Biomed. Inform. 44(1), 126-136 (2011)
- Guarino, N., Guizzardi, G.: "We need to discuss the relationship": revisiting relationships as modeling constructs. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) Advanced Information Sys- tems Engineering, pp. 279-294. Springer, Cham (2015)
- Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of reification and truthmaking. In: Conference of the Italian Association for Artificial Intelligence, pp. 237-249. Springer (2016)
- Guidoni, G.L., Almeida, J.P.A., Guizzardi, G.: Transformation of ontology-based conceptual models into relational schemas. In: International Conference on Conceptual Modeling, pp. 315-330. Springer (2020)
- Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT, Centre for Telematics and Information Technology (2005)
- Guizzardi, G.: Objects and events in context. In: 11th International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT). Keynote Speech (2019)
- Guizzardi, G., Figueiredo, G., Hedblom, M.M., Poels, G.: Ontology-based model abstraction. In: 2019 13th Interna- tional Conference on Research Challenges in Information Sci- ence (RCIS), pp. 1-13 (2019). https://doi.org/10.1109/rcis.2019. 8876971
- Guizzardi, G., Fonseca, C.M., Almeida, J.P.A., Sales, T.P., Bene- vides, A.B., Porello, D.: Types and taxonomic structures in conceptual modeling: a novel ontological theory and engineering support. Data Knowl. Eng. 134, 101,891 (2021)
- Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological consider- ations about the representation of events and endurants in business models. In: International Conference on Business Process Man- agement, pp. 20-36. Springer (2016)
- Guizzardi, G., Sales, T.P., Almeida, J.P.A., Poels, G.: Relational contexts and conceptual model clustering. In: IFIP Working Con- ference on The Practice of Enterprise Modeling, pp. 211-227. Springer (2020)
- Guizzardi, G., Wagner, G.: What's in a relationship: an ontological analysis. In: International Conference on Conceptual Modeling, pp. 83-97. Springer (2008)
- Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.: Towards ontological foundations for conceptual modeling: the Unified Foundational Ontology (UFO) story. Appl. Ontol. 10(3-4), 259- 271 (2015). https://doi.org/10.3233/AO-150157
- Hitzler, P., Shimizu, C.: Modular ontologies as a bridge between human conceptualization and data. In: International Conference on Conceptual Structures, pp. 3-6. Springer (2018)
- Lankhorst, M., et al.: Viewpoints and visualisation. In: Enterprise Architecture at Work: Modelling, Communication and Analysis, pp. 171-214. Springer (2017)
- Lozano, J., Carbonera, J., Abel, M., Pimenta, M.: Ontology view extraction: an approach based on ontological meta-properties. In: 2014 IEEE 26th International Conference on Tools with Arti- ficial Intelligence, pp. 122-129 (2014). https://doi.org/10.1109/ ictai.2014.28
- Lozano, J., Carbonera, J.L., Abel, M.: A novel approach for extract- ing well-founded ontology views. In: Papini et al. (ed.) Joint Ontology Workshops 2015, vol. 1517. CEUR-WS (2015)
- Moody, D.: The physics of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756-779 (2009)
- Moody, D.L., Flitman, A.: A methodology for clustering entity relationship models: a human information processing approach. In: Proceedings of 18th ER, pp. 114-130. Springer (1999)
- Moody, D.L., Flitman, A.R.: A decomposition method for entity relationship models: a systems theoretic approach. In: Altmann, G., Lamp, J., Love, P., Mandal, P., Smith, R., Warren, M. (eds.) International Conference on Systems Thinking in Management. ICSTM2000, vol. 72 (2000)
- Olivé, A., Raventós, R.: Modeling events as entities in object- oriented conceptual modeling languages. Data Knowl. Eng. 58(3), 243-262 (2006)
- Özacar, T., Öztürk, Ö., Ünalır, M.O.: ANEMONE: an environment for modular ontology development. Data Knowl. Eng. 70(6), 504- 526 (2011)
- Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foun- dations of JSON schema. In: Proceedings of the 25th International Conference on World Wide Web, pp. 263-273. International World Wide Web Conferences Steering Committee (2016). https://doi. org/10.1145/2872427.2883029
- Ruy, F.B., Guizzardi, G., Falbo, R.A., Reginato, C.C., Santos, V.A.: From reference ontologies to ontology patterns and back. Data Knowl. Eng. 109, 41-69 (2017)
- Sales, T.P., Guizzardi, G.: Ontological anti-patterns: empirically uncovered error-prone structures in ontology-driven conceptual models. Data Knowl. Eng. 99, 72-104 (2015)
- Snoeck, M.: Enterprise Information Systems Engineering: The MERODE Approach. Springer, Berlin (2014)
- Teixeira, M.: An ontology-based process for domain-specific visual language design. Federal University of Espirito Santo, Brazil/Ghent University, Belgium (2016)
- Tzitzikas, Y., Hainaut, J.L.: How to tame a very large ER dia- gram (using link analysis and force-directed drawing algorithms). In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O. (eds.) Conceptual Modeling. ER 2005, pp. 144-159. Springer, Berlin (2005)
- Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On ranking RDF schema elements (and its application in visualization). J. Univers. Comput. Sci. 13(12), 1854-1880 (2007)
- Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual modeling languages in ontology-driven conceptual modeling. In: Proceedings of 35th ER (2016)
- Verdonck, M., Gailly, F., Pergl, R., Guizzardi, G., Martins, B., Pas- tor, O.: Comparing traditional conceptual modeling with ontology- driven conceptual modeling?: An empirical study. Inf. Syst. 81, 92-103 (2019). https://doi.org/10.1016/j.is.2018.11.009
- Villegas Niño, A.: A filtering engine for large conceptual schemas. Universitat Politècnica de Catalunya (2013)
- W3C: OWL 2 Web Ontology Language. Structural specification and functional-style syntax. W3C recommendation 11 December 2012 (2012). https://www.w3.org/TR/owl2-syntax/
- Weber, B.: The impact of modularization on the understandability of declarative process models: a research model. In: Information Systems and Neuroscience, p. 133 (2020)
- Wieringa, R., de Jonge, W., Spruit, P.: Using dynamic classes and role classes to model object migration. Theory Pract. Object Syst. 1(1), 61-83 (1995)
- Winter, M., Pryss, R., Probst, T., Baß, J., Reichert, M.: Measuring the cognitive complexity in the comprehension of modular process models. IEEE Trans. Cogn. Develop. Syst. (2020). https://doi.org/ 10.1109/TCDS.2020.3032730
- Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Zakharyaschev, M.: Ontology-based data access: a sur- vey. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 5511-5519 (2018). https://doi.org/10.24963/ijcai.2018/777
- Zambon, E., Guizzardi, G.: Formal definition of a general ontology pattern language using a graph grammar. In: 2017 Federated Con- ference on Computer Science and Information Systems (FedCSIS), IEEE pp. 1-10 (2017)