Academia.eduAcademia.edu

Outline

A New Clustering Ensemble Framework

2013, International Journal of Learning Management Systems

Abstract

A new criterion for clusters validation is proposed in the paper and based on the new cluster validation criterion a clustering ensmble framework is proposed. The main idea behind the framework is to extract the most stable clusters in terms of the defined criteria. Employing this new cluster validation criterion, the obtained ensemble is evaluated on some well-known and standard data sets. The empirical studies show promising results for the ensemble obtained using the proposed criterion comparing with the ensemble obtained using the standard clusters validation criterion.

References (15)

  1. Ayad H., Kamel M.S.: Cumulative Voting Consensus Method for Partitions with a Variable Number of Clusters. IEEE Trans. on Pattern Analysis and Machine Intelligence, VOL. 30, NO. 1, 160-173, (2008).
  2. Bhatia S.K., Deogun J.S.: Conceptual Clustering in Information Retrieval. IEEE Trans. Systems, Man, and Cybernetics, vol. 28, no. 3, 427-536, (1998).
  3. Faceli K., Marcilio C.P., Souto D.: Multi-objective Clustering Ensemble. Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (HIS'06) (2006).
  4. Fern X.Z., Lin W.: Cluster Ensemble Selection. SIAM International Conference on Data Mining (SDM08) (2008).
  5. Fred A., Jain A. K.: Data Clustering Using Evidence Accumulation. Proc. of the 16th Intl. Conf. on Pattern Recognition, ICPR02, Quebec City, 276 -280, (2002).
  6. Fred A., Jain A.K.: Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(6):835-850, (2005).
  7. Fred A., Jain A.K.: Learning Pairwise Similarity for Data Clustering. In Proc. of the 18th Int. Conf. on Pattern Recognition (ICPR'06), (2006).
  8. Fred A., Lourenco A.: Cluster Ensemble Methods: from Single Clusterings to Combined Solutions. Studies in Computational Intelligence (SCI), 126, 3-30, (2008).
  9. Frigui H., Krishnapuram R.: A Robust Competitive Clustering Algorithm with Applications in Computer Vision. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 5, 450-466, (1999).
  10. Judd D., Mckinley P., Jain A.K.: Large-Scale Parallel Data Clustering. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 2, 153-158, (1997).
  11. Lange T., Braun M.L., Roth V., Buhmann J.M.: Stability-based model selection. In Advances in Neural Information Processing Systems 15. MIT Press, (2003).
  12. Law M.H.C., Topchy A.P., Jain A.K.: Multiobjective data clustering. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, volume 2, 424-430, (2004).
  13. Newman C.B.D.J., Hettich S., Merz C.: UCI repository of machine learning databases. http://www.ics.uci.edu/˜mlearn/MLSummary.html, (1998).
  14. Roth V., Lange T., Braun M., Buhmann J.: A Resampling Approach to Cluster Validation. Intl. Conf. on Computational Statistics, COMPSTAT, (2002).
  15. Strehl A., Ghosh J.: Cluster ensembles -a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3(Dec):583-617, (2002).