Intelligent Approaches in Locomotion - A Review
2014, Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/S10846-014-0149-ZAbstract
In this paper we review more than 140 publications and try to not only give a snap shot of the current state of the art research in the area, but also to critically analyse and compare different methodologies used in this research field. Among the investigated intelligent approaches for solving locomotion problems are oscillator based Central Pattern Generators, Neural Networks, Hidden Markov models, Rule Based and Fuzzy Logic systems, as well as Analytical concepts. We try to compare those methods based on the quality of the produced solutions in terms of time, stability, correctness and the expense and cost for achieving them. At the end of each section we list the advantages and disadvantages of the reviewed methods and scrutinize them considering the complexity of the approaches, their applicability to the investigated locomotion tasks and the constraints of the produced solutions. The reviewed publications examine a range of legged and non-legged systems, operating in simple and complex environments, with several different locomotion tasks.
References (145)
- Ha, T., Choi, C.-H.: An effective trajectory generation method for bipedal walking. Robot. Auton. Syst. 55(10), 795-810 (2007)
- Choi, Y., Kim, D., Oh, Y., You, B.-J.: Posture/walking con- trol for humanoid robot based on kinematic resolution of com jacobian with embedded motion. IEEE Trans. Robot. 23(6), 1285-1293 (2007)
- Morimoto, J., Endo, G., Nakanishi, J., Cheng, G.: A bio- logically inspired biped locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans. Robot. 24(1), 185-191 (2008)
- Reil, T., Husbands, P.: Evolution of central pattern genera- tors for bipedal walking in a real-time physics environment. IEEE Trans. Evol. Comput. 6(2), 159-168 (2002)
- Xiao, J., Su, J., Cheng, Y., Wang, F., Xu, X.: Research on gait planning of artificial leg based on central pattern gener- ator. In: Chinese Control and Decision Conference. CCDC 2008, pp. 2147-2151 (2008)
- Nandi, G.C., Ijspeert, A.J., Chakraborty, P., Nandi, A.: Development of Adaptive Modular Active Leg (AMAL) using bipedal robotics technology. Robot. Auton. Syst. 57(6-7), 603-616 (2009)
- Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Graph. 24(3), 697-701 (2005)
- Ijspeert, A.J., Hallam, J., Willshaw, D.: Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology. Adapt. Behav. 7(2), 151 (1999)
- Hirukawa, H., Kanehiro, F., Kaneko, K., Kajita, S., Fujiwara, K., Kawai, Y., Tomita, F., Hirai, S., Tanie, K., Isozumi, T., Akachi, K., Kawasaki, T., Ota, S., Yokoyama, K., Handa, H., Fukase, Y., ichiro Maeda, J., Nakamura, Y., Tachi, S., Inoue, H.: Humanoid robotics platforms devel- oped in HRP. Robot. Auton. Syst. 48(4), 165-175 (2004)
- Lachat, D., Crespi, A., Ijspeert, A.J.: BoxyBot: a swim- ming and crawling fish robot controlled by a central pattern generator. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2006, pp. 643-648 (2006)
- Watanabe, K., Tajima, A., Izumi, K.: Locomotion pattern generation of semi-looper type robots using central pattern generators based on van der Pol oscillators. In: 6th IEEE International Conference on Industrial Informatics. INDIN 2008, pp. 377-382 (2008)
- Goswami, D., Vadakkepat, P.: Planar bipedal jumping gaits with stable landing. IEEE Trans. Robot. 25(5), 1030-1046 (2009)
- Hosoda, K., Takuma, T., Nakamoto, A., Hayashi, S.: Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion. Robot. Auton. Syst. 56(1), 46- 53 (2008)
- Braun, D.J., Goldfarb, M.: A control approach for actu- ated dynamic walking in biped robots. IEEE Trans. Robot. 25(6), 1292-1303 (2009)
- Asano, F., Yamakita, M., Kamamichi, N., Luo, Z.-W.: A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Trans. Robot. Autom. 20(3), 565-573 (2004)
- Hirukawa, H., Hattori, S., Kajita, S., Harada, K., Kaneko, K., Kanehiro, F., Morisawa, M., Nakaoka, S.: A Pattern Generator of Humanoid Robots Walking on a Rough Ter- rain. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2181-2187 (2007)
- Miossec, S., Aoustin, Y.: A simplified stability study for a biped walk with underactuated and overactuated phases. Int. J. Robot. Res. 24(7), 551 (2005)
- Chevallereau, C., Westervelt, E., Grizzle, J.: Asymptoti- cally stable running for a five-link, four-actuator, planar bipedal robot. Int. J. Robot. Res. 24(6), 464 (2005)
- Asano, F., Luo, Z.-W., Yamakita, M.: Biped Gait Genera- tion and Control Based on a Unified Property of Passive Dynamic Walking. IEEE Trans. Robot. 21(4), 754-762 (2005)
- Reisinger, K.D., Moskowitz, G.D.: Bipedal locomotion: stopping and the standing/balance gait. Int. J. Robot. Res. 18(3), 333 (1999)
- Tlalolini, D., Chevallereau, C., Aoustin, Y.: Comparison of different gaits with rotation of the feet for a planar biped. Robot. Auton. Syst. 57(4), 371-383 (2009)
- Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: Dynam- ics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 22(3), 568-575 (2006)
- Asano, F., Luo, Z.-W.: Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation. IEEE Trans. Robot. 24(6), 1289-1301 (2008)
- Kim, Y.-D., Lee, B.-J., Ryu, J.-H., Kim, J.-H.: Landing force control for humanoid robot by time-domain pas- sivity approach . IEEE Trans. Robot. 23(6), 1294-1301 (2007)
- Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable walking pattern of a humanoid robot by using allowable zmp variation. IEEE Trans. Robot. 24(4), 917- 925 (2008)
- Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robot. Auton. Syst. 57(8), 839-845 (2009)
- Wieber, P.-B., Chevallereau, C.: Online adaptation of refer- ence trajectories for the control of walking systems. Robot. Auton. Syst. 54(7), 559-566 (2006)
- Sugihara, T., Nakamura, Y., Inoue, H.: Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. 2, 1404-1409 vol. 1402 (2002)
- Seipel, J.E., Holmes, P.: Running in three dimensions: anal- ysis of a point-mass sprung-leg model. Int. J. Robot. Res. 24(8), 674 (2005)
- Vukobratovic, M., Borovac, B.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157-173 (2004)
- Park, J.H.: Fuzzy-logic zero-moment-point trajectory gen- eration for reduced trunk motions of biped robots. Fuzzy Sets Syst. 134(1), 189-203 (2003)
- Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K., Morisawa, M.: A univer- sal stability criterion of the foot contact of legged robots -adios ZMP. In: Proceedings of the 2006 IEEE Inter- national Conference on Robotics and Automation. ICRA 2006, pp. 1976-1983 (2006)
- Koyanagi, K., Hirukawa, H., Hattori, S., Morisawa, M., Nakaoka, S., Harada, K., Kajita, S.: A pattern generator of humanoid robots walking on a rough terrain using a handrail. In: IEEE/RSJ International Conference on Intel- ligent Robots and Systems. IROS 2008, pp. 2617-2622 (2008)
- Hyon, S.-H.: Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Trans. Robot. 25(1), 171-178 (2009)
- Mitobe, K., Capi, G., Nasu, Y.: Control of walking robots based on manipulation of the zero moment point. Robotica 18(06), 651-657 (2001)
- Furuta, T., Tawara, T., Okumura, Y., Shimizu, M., Tomiyama, K.: Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robot. Auton. Syst. 37(2-3), 81-100 (2001)
- Kajita, S., Yamaura, T., Kobayashi, A.: Dynamic walking control of a biped robot along a potential energy conserving orbit. IEEE Trans. Robot. Autom. 8(4), 431-438 (1992)
- Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Autom. 6(1), 86-96 (1990)
- Dong, H., Zhao, M.G., Zhang, J., Zhang, N.Y.: Hard- ware design and gait generation of humanoid soccer robot Stepper-3D. Robot. Auton. Syst. 57(8), 828-838 (2009)
- Kagami, S., Mochimaru, M., Ehara, Y., Miyata, N., Nishiwaki, K., Kanade, T., Inoue, H.: Measurement and comparison of humanoid H7 walking with human being. Robot. Auton. Syst. 48(4), 177-187 (2004)
- Kanehiro, F., Hirukawa, H., Kajita, S.: Openhrp: Open architecture humanoid robotics platform. Int. J. Robot. Res. 23(2), 155 (2004)
- Ude, A., Atkeson, C.G., Riley, M.: Programming full-body movements for humanoid robots by observation. Robot. Auton. Syst. 47(2-3), 93-108 (2004)
- Yoo, J.-K., Lee, B.-J., Kim, J.-H.: Recent progress and development of the humanoid robot HanSaRam. Robot. Auton. Syst. 57(10 ), 973-981 (2009)
- Ono, K., Takahashi, R., Shimada, T.: Self-excited walk- ing of a biped mechanism. Int. J. Robot. Res. 20(12), 953 (2001)
- Ono, K., Furuichi, T., Takahashi, R.: Self-excited walking of a biped mechanism with feet. Int. J. Robot. Res. 23(1), 55 (2004)
- Vadakkepat, P., Sin, N.B., Goswami, D., Zhang, R.X., Tan, L.Y.: Soccer playing humanoid robots: Processing architec- ture, gait generation and vision system. Robot. Auton. Syst. 57(8), 776-785 (2009)
- Herr, H.M., McMahon, T.A.: A trotting horse model. Int. J. Robot. Res. 19(6), 566 (2000)
- Herr, H.M., McMahon, T.A.: A galloping horse model. Int. J. Robot. Res. 20(1), 26 (2001)
- Formal'sky, A., Chevellereau, C., Perrin, B.: On ballistic walking locomotion of a quadruped. Int. J. Robot. Res. 19(8), 743-761 (2000)
- Poulakakis, I., Smith, J.A., Buehler, M.: Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot. Int. J. Robot. Res. 24(4), 256 (2005)
- Garcia, E., Gonzalez de Santos, P.: On the improvement of walking performance in natural environments by a com- pliant adaptive gait. IEEE Trans. Robot. 22(6), 1240-1253 (2006)
- Albiez, J.C., Luksch, T., Berns, K., Dillmann, R.: Reactive reflex-based control for a four-legged walking machine. Robot. Auton. Syst. 44(3-4), 181-189 (2003)
- Raibert, M., Chepponis, M., Brown, H. Jr.: Running on four legs as though they were one. IEEE J. Robot. Autom. 2(2), 70-82 (1986)
- Lee, T.-T., Liao, C.-M., Chen, T.K.: On the stability prop- erties of hexapod tripod gait . IEEE J. Robot. Autom. 4(4), 427-434 (1988)
- Altendorfer, R., Koditschek, D.E., Holmes, P.: Stabil- ity analysis of legged locomotion models by symmetry- factored return maps. Int. J. Robot. Res. 23(10-11), 979 (2004)
- Bessonnet, G., Seguin, P., Sardain, P.: A parametric opti- mization approach to walking pattern synthesis. Int. J. Robot. Res. 24(7), 536 (2005)
- Chevallereau, C., Grizzle, J.W., Shih, C.-L.: Asymptoti- cally stable walking of a five-link underactuated 3-d bipedal robot. IEEE Trans. Robot. 25(1), 37-50 (2009)
- Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42-56 (2003)
- Westervelt, E., Buche, G., Grizzle, J.: Experimental valida- tion of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23(6), 559 (2004)
- Shapiro, A., Rimon, E., Ohev-Zion, A.: On the mechanics of natural compliance in frictional contacts and its effect on grasp stiffness and stability. Int. J. Robot. Res. 32(4), 425- 445 (2013)
- Hemker, T., Stelzer, M., von Stryk, O., Sakamoto, H.: Effi- cient Walking Speed Optimization of a Humanoid Robot. Int. J. Robot. Res. 28(2), 303-314 (2009)
- Geva, Y., Shapiro, A.: A combined potential function and graph search approach for free gait generation of quadruped robots. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 5371-5376. IEEE (2012)
- Pal, P.K., Jayarajan, K.: Generation of free gait-a graph search approach. IEEE Trans. Robot. Autom. 7(3), 299-305 (1991)
- Sznaier, M., Damborg, M.J.: An adaptive controller for a one-legged mobile robot. IEEE Trans. Robot. Autom. 5(2), 253-259 (1989)
- Capi, G., Nasu, Y., Barolli, L.: Application of Genetic Algorithms for biped robot gait synthesis optimization dur- ing walking and going up-stairs. Adv. Robot. 15(6), 675- 694 (2001)
- Capi, G., Kaneko, S., Mitobe, K., Barolli, L., Nasu, Y.: Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms. Robot. Auton. Syst. 38(2), 119-128 (2002)
- Capi, G., Nasu, Y., Barolli, L., Mitobe, K.: Real time gait generation for autonomous humanoid robots: A case study for walking. Robot. Auton. Syst. 42(2), 107-116 (2003)
- Feng, K., Chew, C.-M., Hong, G.-S., Zielinska, T.: Bipedal locomotion control using a four-compartmental central pat- tern generator. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 1513, pp. 1515-1520, (2005)
- Komatsu, T., Usui, M.: Dynamic walking and running of a bipedal robot using hybrid central pattern genera- tor method. In: 2005 IEEE International Conference on Mechatronics and Automation, vol. 982, pp. 987-992 (2005)
- Yuasa, H., Ito, M.: A Theory on Autonomous Distributed Systems with Application to a Gait Pattern Generator of Quadruped. In: American Control Conference, pp. 2268- 2273 (1991)
- Nakada, K., Asai, T., Amemiya, Y.: An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion. IEEE Trans. Neural Netw. 14(5), 1356-1365 (2003)
- Asa, K., Ishimura, K., Wada, M.: Behavior transition between biped and quadruped walking by using bifurcation. Robot. Auton. Syst. 57(2), 155-160 (2009)
- Bay, J.S., Hemami, H.: Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans. Biomed. Eng. BME 34(4), 297-306 (1987)
- Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE International Conference on Robotics and Automation. ICRA 2008, pp. 819-824 (2008)
- Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Robot. Res. 22(3-4), 187 (2003)
- Arena, P., Fortuna, L., Frasca, M., Patane, L.: CNN based central pattern generators with sensory feedback. In: Pro- ceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications. (CNNA 2002), pp. 275-282 (2002)
- Feng, H., Wang, R.: Construction of central pattern gen- erator for quadruped locomotion control. In: IEEE/ASME International Conference on Advanced Intelligent Mecha- tronics. AIM 2008, pp. 979-984 (2008)
- Liu, C., Chen, Q., Zhang, J.: Coupled Van Der Pol oscil- lators utilised as Central pattern generators for quadruped locomotion. In: Control and Decision Conference. CCDC '09, Chinese, pp. 3677-3682 (2009)
- Takemura, H., Deguchi, M., Ueda, J., Matsumoto, Y., Oga- sawara, T.: Slip-adaptive walk of quadruped robot. Robot. Auton. Syst. 53(2), 124-141 (2005)
- Micci-Barreca, D., Ogmen, H.: A central pattern generator for insect gait production. In: From Perception to Action Conference. Proceedings, pp. 348-351 (1994)
- Klaassen, B., Linnemann, R., Spenneberg, D., Kirchner, F.: Biomimetic walking robot SCORPION: Control and modeling. Robot. Auton. Syst. 41(2-3), 69-76 (2002)
- Zhao, W., Yu, J., Fang, Y., Wang, L.: Development of Multi-mode Biomimetic Robotic Fish Based on Central Pattern Generator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3891-3896 (2006)
- McIsaac, K.A., Ostrowski, J.P.: Experimental verification of open-loop control for an underwater eel-like robot. Int. J. Robot. Res. 21(10-11), 849 (2002)
- Mehta, V., Brennan, S., Gandhi, F.: Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot. IEEE Trans. Robot. 24(2), 348-360 (2008)
- Ijspeert, A.J., Crespi, A.: Online trajectory generation in an amphibious snake robot using a lamprey-like central pat- tern generator model. In: IEEE International Conference on Robotics and Automation, pp. 262-268 (2007)
- Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 1585-1590 (2006)
- Geng, T., Porr, B., Worotter, F.: Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning. Int. J. Robot. Res. 25(3), 259 (2006)
- Endo, G., Morimoto, J., Matsubara, T., Nakanishi, J., Cheng, G.: Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot. Int. J. Robot. Res. 27(2), 213-228 (2008)
- Hliot, R., Espiau, B.: Online generation of cyclic leg tra- jectories synchronized with sensor measurement. Robot. Auton. Syst. 56(5), 410-421 (2008)
- Rutishauser, S., Sprowitz, A., Righetti, L., Ijspeert, A.J.: Passive compliant quadruped robot using Central Pattern Generators for locomotion control. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. BioRob 2008, pp. 710-715 (2008)
- Tanev, I., Ray, T., Buller, A.: Automated Evolutionary Design, Robustness, and Adaptation of Sidewinding Loco- motion of a Simulated Snake-Like Robot. IEEE Trans. Robot. 21(4), 632-645 (2005)
- Shan, J., Junshi, C., Jiapin, C.: Design of central pattern generator for humanoid robot walking based on multi- objective GA. In: 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2000), Proceed- ings, vol. 1933, pp. 1930-1935 (2000)
- Kim, J.-J., Lee, J.-J.: Gait adaptation method of biped robot for various terrains using central pattern generator (CPG) and learning mechanism. In: International Conference on Control, Automation and Systems. ICCAS '07, pp. 10-14 (2007)
- Wolff, K., Pettersson, J., Heralic, A., Wahde, M.: Structural Evolution of Central Pattern Generators for Bipedal Walk- ing in 3D Simulation. In: IEEE International Conference on Systems, Man and Cybernetics. SMC '06, pp. 227-234 (2006)
- Inada, H., Ishii, K.: Behavior generation of bipedal robot using central pattern generator(CPG) (1st report: CPG parameters searching method by genetic algorithm). In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. (IROS 2003), Proceedings, vol. 2173, pp. 2179-2184 (2003)
- Russell, A., Orchard, G., Etienne-Cummings, R.: Config- uring of Spiking Central Pattern Generator Networks for Bipedal Walking Using Genetic Algorthms. In: IEEE Inter- national Symposium on Circuits and Systems. ISCAS 2007, pp. 1525-1528 (2007)
- Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Trans. Robot. 21(3), 402-410 (2005)
- Akio, S., Masaki, Y.: Design of a novel central pattern generator and the hebbian motion learning. In: Control Applications, (CCA) & Intelligent Control. (ISIC) 2009, IEEE. pp. 1655-1660 (2009)
- Durr, V., Krause, A.F., Schmitz, J., Cruse, H.: Neuroetho- logical concepts and their transfer to walking machines. Int. J. Robot. Res. 22(3-4), 151 (2003)
- Manoonpong, P., Wörgötter, F.: Efference copies in neu- ral control of dynamic biped walking. Robot. Auton. Syst. 57(11), 1140-1153 (2009)
- Xia, Y., Wang, J., Fok, L.-M.: Grasping-force optimiza- tion for multifingered robotic hands using a recurrent neural network. IEEE Trans. Robot. Autom. 20(3), 549-554 (2004)
- Srinivasan, S., Gander, R.E., Wood, H.C.: A movement pattern generator model using artificial neural networks. IEEE Trans. Biomed. Eng. 39(7), 716-722 (1992)
- Vundavilli, P.R., Pratihar, D.K.: Dynamically balanced optimal gaits of a ditch-crossing biped robot. Robot. Auton. Syst. 58(4), 349-361 (2010)
- Gallagher, J.C., Beer, R.D., Espenschied, K.S., Quinn, R.D.: Application of evolved locomotion controllers to a hexapod robot. Robot. Auton. Syst. 19(1), 95-103 (1996)
- Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1(1), 91-122 (1992)
- Petridis, V., Papaikonomou, A.: Recurrent neural networks as pattern generators. In: 1994 IEEE International Con- ference on Neural Networks. IEEE World Congress on Computational Intelligence, vol.872, pp. 872-875 (1994)
- Ilg, W., Berns, K.: A learning architecture based on rein- forcement learning for adaptive control of the walking machine LAURON. Robot. Auton. Syst. 15(4), 321-334 (1995)
- Ilg, W., Berns, K., Mhlfriedel, T., Dillmann, R.: Hybrid learning concepts based on self-organizing neural networks for adaptive control of walking machines. Robot. Auton. Syst. 22(3-4), 317-327 (1997)
- Benbrahim, H., Franklin, J.A.: Biped dynamic walking using reinforcement learning. Robot. Auton. Syst. 22(3-4), 283-302 (1997)
- Sabourin, C., Bruneau, O., Buche, G.: Control strategy for the robust dynamic walk of a biped robot. Int. J. Robot. Res. 25(9), 843-860 (2006)
- Sabourin, C., Bruneau, O.: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks. Robot. Auton. Syst. 51(2-3), 81-99 (2005)
- Wyffels, F., Schrauwen, B.: Design of a Central Pattern Generator Using Reservoir Computing for Learning Human Motion. In: Advanced Technologies for Enhanced Quality of Life. AT-EQUAL '09, pp. 118-122 (2009)
- Berns, K., Dillmann, R., Piekenbrock, S.: Neural networks for the control of a six-legged walking machine. Robot. Auton. Syst. 14(2-3), 233-244 (1995)
- Inamura, T., Toshima, I., Tanie, H., Nakamura, Y.: Embod- ied symbol emergence based on mimesis theory. Int. J. Robot. Res. 23(4-5), 363 (2004)
- Lee, D., Nakamura, Y.: Mimesis model from partial obser- vations for a humanoid robot. Int. J. Robot. Res. 29(1), 60 (2010)
- Hohn, O., Gerth, W.: Probabilistic balance monitoring for bipedal robots. Int. J. Robot. Res. 28(2), 245-256 (2009)
- Kulic, D., Nakamura, Y.: Incremental learning and mem- ory consolidation of whole body human motion primitives. Adapt. Behav. 17(6), 484 (2009)
- Kulic, D., Takano, W., Nakamura, Y.: Incremental learn- ing, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains. Int. J. Robot. Res. 27(7), 761-784 (2008)
- Zhou, C., Ruan, D.: Integration of linguistic and numerical information for biped control. Robot. Auton. Syst. 28(1), 53-70 (1999)
- Zhou, C., Meng, Q.: Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets Syst. 134(1), 169-187 (2003)
- Zhou, C.: Robot learning with GA-based fuzzy reinforce- ment learning agents. Inf. Sci. 145(1-2), 45-68 (2002)
- Jha, R.K., Singh, B., Pratihar, D.K.: On-line stable gait generation of a two-legged robot using a genetic-fuzzy system. Robot. Auton. Syst. 53(1), 15-35 (2005)
- Pratihar, D.K., Deb, K., Ghosh, A.: Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach. Robot. Auton. Syst. 41(1), 1-20 (2002)
- Barfoot, T.D., Earon, E.J.P., D'Eleuterio, G.M.T.: Exper- iments in learning distributed control for a hexapod robot. Robot. Auton. Syst. 54(10), 864-872 (2006)
- Pal, P.K., Kar, D.C.: Gait optimization through search. Int. J. Robot. Res. 19(4), 394 (2000)
- McIsaac, K.A., Ostrowski, J.P.: Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19(4), 637-652 (2003)
- Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523 (1999)
- Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: Definitions, biological trajec- tories and control implications. Int. J. Robot. Res. 24(12), 1013 (2005)
- Grillner, S.: Locomotion in vertebrates: central mech- anisms and reflex interaction. Physiol. Rev. 55(2), 247 (1975)
- Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11(23), R986- R996 (2001)
- Duysens, J., Van de Crommert, H.W.A.A.: Neural control of locomotion; Part 1: The central pattern generator from cats to humans. Gait & Posture 7(2), 131-141 (1998)
- MacKay-Lyons, M.: Central pattern generation of loco- motion: a review of the evidence. Phys. Ther. 82(1), 69 (2002)
- Syed, N., Bulloch, A., Lukowiak, K.: In vitro recon- struction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250(4978), 282 (1990)
- Zhu, K., Zhang, D., Lan, L.: On Central Pattern Gen- erator of Biological Motor System. In: 9th International Conference on Control, Automation, Robotics and Vision. ICARCV '06, pp. 1-5 (2006)
- Wu, Q., Liu, C., Zhang, J., Chen, Q.: Survey of locomotion control of legged robots inspired by biological concept. Sci. China Ser. F: Inf. Sci. 52(10), 1715-1729 (2009)
- Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Netw. 21(4), 642-653 (2008)
- Grillner, S., Deliagina, T., Manira, A.E., Hill, R.H., Orlovsky, G.N., Walln, P., Ekeberg, O., Lansner, A.: Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 18(6), 270-279 (1995)
- Matsuoka, K.: Sustained oscillations generated by mutu- ally inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367-376 (1985)
- Lee, W.M., Yam, Y.: Construction of Central Pattern Gen- erator Using Piecewise Affine Systems. In: IEEE Interna- tional Conference on Control and Automation. ICCA 2007, pp. 1729-1734 (2007)
- Grossberg, S., Pribe, C., Cohen, M.A.: Neural control of interlimb oscillations. Biol. Cybernet. 77, 131-140 (1997)
- Zhang, D., Hu, D., Shen, L., Xie, H.: Design of a Cen- tral Pattern Generator for Bionic-robot Joint with Angular Frequency Modulation. In: IEEE International Conference on Robotics and Biomimetics. ROBIO '06, pp. 1664-1669 (2006)
- Albus, J.S.: A new approach to manipulator con- trol: The cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control. 97(3), 220-227 (1975)
- Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learn- ing representations by back-propagating errors. Nature 323(6088), 533-536 (1986)
- Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maxi- mization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Stat. 41(1), 164-171 (1970)
- Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260-269 (1967)