Measures of neural similarity
https://doi.org/10.1101/439893Abstract
One fundamental question is what makes two brain states similar. For example, what makes the activity in visual cortex elicited from viewing a robin similar to a sparrow? One common assumption in fMRI analysis is that neural similarity is described by Pearson correlation. However, there are a host of other possibilities, including Minkowski and Mahalanobis measures, with each differing in its mathematical, theoretical, neural computational assumptions. Moreover, the operable measures may vary across brain regions and tasks. Here, we evaluated which of several competing similarity measures best captured neural similarity. Our technique uses a decoding approach to assess the information present in a brain region and the similarity measures that best correspond to the classifier's confusion matrix are preferred. Across two published fMRI datasets, we found the preferred neural similarity measures were common across brain regions, but differed across tasks. Moreover, Pearson correla...
References (64)
- D. L. Medin, R. L. Goldstone, D. Gentner, Respects for similarity., Psychological review 100 (1993) 254.
- R. L. Goldstone, The role of similarity in categorization: providing a groundwork, Cognition 52 (1994) 125-157.
- A. B. Markman, W. T. Maddox, D. a. Worthy, B. Markman, and Ex- celling Under Choking Pressure, Psychological Science 17 (2006) 944- 948.
- M. N. Coutanche, S. L. Thompson-Schill, Creating concepts from con- verging features in human cortex, Cerebral Cortex 25 (2014) 2584-2593.
- T. J. Palmeri, I. Gauthier, Visual object understanding, Nature Reviews Neuroscience 5 (2004) 291.
- S. Bracci, H. O. de Beeck, Dissociations and associations between shape and category representations in the two visual pathways, Journal of Neuroscience 36 (2016) 432-444.
- A. Tversky, Features of similarity., Psychological review 84 (1977) 327.
- D. M. Ennis, J. J. Palen, K. Mullen, A multidimensional stochastic theory of similarity, Journal of Mathematical Psychology 32 (1988) 449-465.
- J. B. Tenenbaum, T. L. Griffiths, Generalization, similarity and Bayesian inference, Behavioral and Brain Sciences 24 (2001) 629-640.
- D. Gentner, A. B. Markman, Structure mapping in analogy and simi- larity., American psychologist 52 (1997) 45.
- E. M. Pothos, J. R. Busemeyer, J. S. Trueblood, A quantum geometric model of similarity., Psychological Review 120 (2013) 679.
- U. Hahn, N. Chater, L. B. Richardson, Similarity as transformation, Cognition 87 (2003) 1-32.
- C. L. Krumhansl, Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density., Psychological Review 85 (1978) 445-463.
- N. Kriegeskorte, M. Mur, P. Bandettini, Representational similarity analysis -connecting the branches of systems neuroscience., Frontiers in systems neuroscience 2 (2008) 4.
- G. Xue, Q. Dong, C. Chen, Z. Lu, J. A. Mumford, R. A. Poldrack, Greater neural pattern similarity across repetitions is associated with better memory, Science 330 (2010) 97-101.
- H. Nili, C. Wingfield, A. Walther, L. Su, W. Marslen-Wilson, N. Kriegeskorte, A Toolbox for Representational Similarity Analysis, PLoS Computational Biology 10 (2014).
- M. Weber, S. L. Thompson-Schill, D. Osherson, J. Haxby, L. Parsons, Predicting judged similarity of natural categories from their neural rep- resentations, Neuropsychologia 47 (2009) 859-868.
- K. F. LaRocque, M. E. Smith, V. A. Carr, N. Witthoft, K. Grill-Spector, A. D. Wagner, Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory, Journal of Neuro- science 33 (2013) 5466-5474.
- T. Davis, R. A. Poldrack, Quantifying the internal structure of cat- egories using a neural typicality measure, Cerebral Cortex 24 (2013) 1720-1737.
- N. Kriegeskorte, M. Mur, D. A. Ruff, R. Kiani, J. Bodurka, H. Esteky, K. Tanaka, P. A. Bandettini, Matching categorical object representa- tions in inferior temporal cortex of man and monkey, Neuron 60 (2008) 1126-1141.
- T. Davis, G. Xue, B. C. Love, A. R. Preston, R. A. Poldrack, Global neural pattern similarity as a common basis for categorization and recog- nition memory, Journal of Neuroscience 34 (2014) 7472-7484.
- E. R. Soucy, D. F. Albeanu, A. L. Fantana, V. N. Murthy, M. Meister, Precision and diversity in an odor map on the olfactory bulb, Nature neuroscience 12 (2009) 210-220.
- M. C. W. van Rossum, A novel spike distance, Neural computation 13 (2001) 751-763.
- C. Gardella, O. Marre, T. Mora, Blindfold learning of an accurate neural metric, Proceedings of the National Academy of Sciences (2018) 201718710.
- J. Diedrichsen, G. R. Ridgway, K. J. Friston, T. Wiestler, Comparing the similarity and spatial structure of neural representations: A pattern- component model, NeuroImage 55 (2011) 1665-1678.
- C. Ahlheim, B. C. Love, Estimating the functional dimensionality of neural representations, NeuroImage (2018).
- K. Braunlich, B. C. Love, Occipitotemporal Representations Reflect Individual Differences in Conceptual Knowledge, bioRxiv (2018).
- M. L. Mack, A. R. Preston, B. C. Love, Decoding the brain's algorithm for categorization from its neural implementation, Current Biology 23 (2013) 2023-2027.
- M. L. Mack, B. C. Love, A. R. Preston, Dynamic updating of hippocam- pal object representations reflects new conceptual knowledge, Proceed- ings of the National Academy of Sciences 113 (2016) 13203-13208.
- R. Mihalcea, C. Corley, C. Strapparava, others, Corpus-based and knowledge-based measures of text semantic similarity, in: AAAI, vol- ume 6, pp. 775-780.
- C. Allefeld, J. D. Haynes, Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA, NeuroImage 89 (2014) 345-357.
- J. V. Haxby, J. S. Guntupalli, A. C. Connolly, Y. O. Halchenko, B. R. Conroy, M. I. Gobbini, M. Hanke, P. J. Ramadge, A common, high- dimensional model of the representational space in human ventral tem- poral cortex, Neuron 72 (2011) 404-416.
- R. Kiani, H. Esteky, K. Mirpour, K. Tanaka, Object category structure in response patterns of neuronal population in monkey inferior temporal cortex., Journal of neurophysiology 97 (2007) 4296-4309.
- R. M. Nosofsky, Similarity scaling and cognitive process models, Annual review of Psychology 43 (1992) 25-53.
- T. Davis, G. Xue, B. C. Love, A. R. Preston, R. a. Poldrack, Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory, Journal of Neuroscience 34 (2014) 7472-7484.
- D. J. Heeger, Normalization of cell responses in cat striate cortex, Visual neuroscience 9 (1992) 181-197.
- R. Brunelli, T. Poggio, Face recognition: Features versus templates, IEEE transactions on pattern analysis and machine intelligence 15 (1993) 1042-1052.
- R. N. Shepard, Attention and the metric structure of the stimulus space, Journal of Mathematical Psychology 1 (1964) 54-87.
- K. W. Spence, The nature of the response in discrimination learning., Psychological review 59 (1952) 89.
- I. P. Pavlov, G. V. Anrep, Conditioned reflexes, Courier Corporation, 2003.
- M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, S. M. Smith, Fsl, Neuroimage 62 (2012) 782-790.
- A. Bhandari, C. Gagne, D. Badre, Just above Chance: Is It Harder to Decode Information from Prefrontal Cortex Hemodynamic Activity Patterns?, Journal of Cognitive Neuroscience 30 (2018) 1473-1498.
- M. S. Bartlett, The effect of standardization on a χ2 approximation in factor analysis, Biometrika 38 (1951) 337-344.
- R. I. Jennrich, An asymptotic χ2 test for the equality of two correlation matrices, Journal of the American Statistical Association 65 (1970) 904-912.
- M. Persson, J. Rieskamp, Inferences from memory: Strategy-and exemplar-based judgment models compared, Acta Psychologica 130 (2009) 25-37.
- A. Walther, H. Nili, N. Ejaz, A. Alink, N. Kriegeskorte, J. Diedrich- sen, Reliability of dissimilarity measures for multi-voxel pattern analy- sis, NeuroImage 137 (2016) 188-200.
- V. Fritsch, G. Varoquaux, B. Thyreau, J.-B. Poline, B. Thirion, De- tecting outliers in high-dimensional neuroimaging datasets with robust covariance estimators, Medical image analysis 16 (2012) 1359-1370.
- J. Diedrichsen, N. Kriegeskorte, Representational models: A com- mon framework for understanding encoding, pattern-component, and representational-similarity analysis, 2016.
- O. Guest, B. C. Love, What the success of brain imaging implies about the neural code, Elife 6 (2017) e21397.
- C. Allefeld, J.-D. Haynes, Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA, Neuroimage 89 (2014) 345-357.
- I. Charest, N. Kriegeskorte, K. N. Kay, GLMdenoise improves multi- variate pattern analysis of fMRI data, NeuroImage 183 (2018) 606-616.
- D. L. K. Yamins, J. J. DiCarlo, Using goal-driven deep learning models to understand sensory cortex, Nature neuroscience 19 (2016) 356.
- M. Hanke, Y. O. Halchenko, P. B. Sederberg, S. J. Hanson, J. V. Haxby, S. Pollmann, PyMVPA: a python toolbox for multivariate pattern anal- ysis of fMRI data, Neuroinformatics 7 (2009) 37-53.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit- learn: Machine learning in Python, Journal of Machine Learning Re- search 12 (2011) 2825-2830.
- J. A. Mumford, B. O. Turner, F. G. Ashby, R. A. Poldrack, Decon- volving BOLD activation in event-related designs for multivoxel pattern classification analyses, Neuroimage 59 (2012) 2636-2643.
- B. Schölkopf, A. J. Smola, R. C. Williamson, P. L. Bartlett, New support vector algorithms, Neural computation 12 (2000) 1207-1245.
- T. E. Oliphant, SciPy: Open source scientific tools for Python, 2007.
- D. Bates, M. Maechler, B. Bolker, S. Walker, lme4: Linear mixed-effects models using Eigen and S4, R package version 1 (2014) 1-23. References
- M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, S. M. Smith, Fsl, Neuroimage 62 (2012) 782-790.
- J. A. Mumford, B. O. Turner, F. G. Ashby, R. A. Poldrack, Decon- volving BOLD activation in event-related designs for multivoxel pattern classification analyses, Neuroimage 59 (2012) 2636-2643.
- F. Pereira, T. Mitchell, M. Botvinick, Machine learning classi!ers and fMRI: A tutorial overview, NeuroImage 45 (2009) S199-S209.
- R. N. Shepard, Toward a universal law of generalization for psychological science, Science 237 (1987) 1317-1323.
- O. Ledoit, M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of multivariate analysis 88 (2004) 365-411.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit- learn: Machine learning in Python, Journal of Machine Learning Re- search 12 (2011) 2825-2830.