Academia.eduAcademia.edu

Outline

Taxonomy of neural transfer functions

2000, ijcnn

Abstract

Abstract. The choice of transfer functions may strongly influence complexity and performance of neural networks used in classification and approximation tasks. A taxonomy of activation and output functions is proposed, allowing to generate many transfer functions. Several less-...

References (19)

  1. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
  2. N. Dyn, "Interpolation and approximation by radial and related functions", in C. K. Chiu et al, editors, Approximation Theory VI. Academic Press, San Diego, 1989.
  3. K. Hornik, M. Stinchcombe, H. White, "Multilayer feedforward networks are universal approximators", Neural Networks 2: 359-366, 1989.
  4. T. Hastie, R. Tibshirani, "Discriminant adaptive nearest neighbor classification", IEEE PAMI 18: 607-616, 1996.
  5. W. Duch, N. Jankowski, "Survey of neural transfer functions", Neural Computing Surveys 2: 163-213, 1999.
  6. D. R. Wilson, T. R. Martinez, "Improved heterogeneous distance functions", Journal of Artificial Intelligence Research 6: 1-34, 1997.
  7. W. Duch, R. Adamczak, K. Gr ąbczewski, "Methodology of extraction, optimization and application of logical rules", in Intelligent Information Systems VIII, Ustro ń, Poland, 1999, pp. 22-31.
  8. L.N. Cooper D.L. Reilly, C. Elbaum, "A neural model for category learning", Biolog. Cybern. 45: 35-41, 1982.
  9. T. Poggio, F. Girosi, "Network for approximation and learning", Proceedings of the IEEE 78: 1481-1497, 1990.
  10. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, San Diego, 1972.
  11. J. Park and I. W. Sandberg, "Universal approximation using radial basis function networks", Neural Computation 3: 246-257, 1991.
  12. S. Ridella, S. Rovetta, and R. Zunino, "Circular backpropagation networks for classification", IEEE Transaction on Neural Networks 8: 84-97, 1997.
  13. G. Dorffner, "A unified framework for MLPs and RBFNs: Introducing conic section function networks", Cybernetics and Systems 25: 511-554, 1994.
  14. W. Duch and G. H. F. Diercksen, "Feature space mapping as a universal adaptive system", Computer Physics Communications 87: 341-371, 1995.
  15. N. Jankowski, V. Kadirkamanathan, "Statistical control of RBF-like networks for classification", in 7th Int. Conf. on Artificial Neural Networks, Lausanne, Switzerland, Oct. 1997. Springer-Verlag, pp. 385-390.
  16. W. Duch, R. Adamczak, K. Gr ąbczewski, "Extraction of logical rules from backpropagation networks", Neural Processing Letters 7: 1-9, 1998.
  17. W. Duch, N. Jankowski, "New neural transfer functions", J. of Applied Mathematics and Computer Science 7: 639-658, 1997.
  18. Y-H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Reading, MA, 1989.
  19. D. Michie, D. J. Spiegelhalter, and C. C. Taylor, Machine learning, neural and statistical classification, Elis Horwood, London, 1994.