Academia.eduAcademia.edu

Outline

Seizure prediction - ready for a new era

2018, Nature reviews. Neurology

https://doi.org/10.1038/S41582-018-0055-2

Abstract

Epilepsy is a common disorder characterized by recurrent seizures. An overwhelming majority of people with epilepsy regard the unpredictability of seizures as a major issue. More than 30 years of international effort have been devoted to the prediction of seizures, aiming to remove the burden of unpredictability and to couple novel, time-specific treatment to seizure prediction technology. A highly influential review published in 2007 concluded that insufficient evidence indicated that seizures could be predicted. Since then, several advances have been made, including successful prospective seizure prediction using intracranial EEG in a small number of people in a trial of a real-time seizure prediction device. In this Review, we examine advances in the field, including EEG databases, seizure prediction competitions, the prospective trial mentioned and advances in our understanding of the mechanisms of seizures. We argue that these advances, together with statistical evaluations, se...

Key takeaways
sparkles

AI

  1. Prospective seizure prediction in humans is now demonstrated as feasible and effective in clinical trials.
  2. Over 30% of epilepsy patients remain medically intractable, highlighting the need for prediction methods.
  3. Recent databases and competitions have advanced algorithm development and standardization in seizure prediction research.
  4. The network theory of epilepsy and multi-modal techniques are reshaping our understanding of seizure mechanisms.
  5. Continued collaboration is necessary for translating seizure prediction from research to practical, clinical applications.

References (244)

  1. Banerjee, P. N., Filippi, D. & Allen Hauser, W. The descriptive epidemiology of epilepsy-a review. Epilepsy Res. 85, 31-45, (2009).
  2. Kwan, P., Schachter, S. C. & Brodie, M. J. Drug-resistant epilepsy. N. Engl. J. Med. 365, 919-926, (2011).
  3. Ridsdale, L., Charlton, J., Ashworth, M., Richardson, M. P. & Gulliford, M. C. Epilepsy mortality and risk factors for death in epilepsy: a population-based study. Br. J. Gen. Pract. 61, e271-278, (2011).
  4. Dumanis, S. B., French, J. A., Bernard, C., Worrell, G. A. & Fureman, B. E. Seizure Forecasting from Idea to Reality. Outcomes of the My Seizure Gauge Epilepsy Innovation Institute Workshop. eNeuro 4, ENEURO. 0349-0317.2017, (2017).
  5. Epilepsy-Foundation. Ei2 community survey. https://www.epilepsy.com/make- difference/research-and-new-therapies/innovation/epilepsy-innovation-institute/seizure- gauge. (2016).
  6. Nickel, R. et al. Quality of life issues and occupational performance of persons with epilepsy. Arq. Neuropsiquiatr. 70, 140-144, (2012).
  7. Fisher, R. S. et al. The impact of epilepsy from the patient's perspective I. Descriptions and subjective perceptions. Epilepsy Res. 41, 39-51, (2000).
  8. Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and winding road. Brain 130, 314-333, (2007).
  9. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563-571, (2013).
  10. Kuhlmann, L., Grayden, D. B., Wendling, F. & Schiff, S. J. Role of multiple-scale modeling of epilepsy in seizure forecasting. J. Clin. Neurophysiol. 32, 220-226, (2015).
  11. Snyder, D. E., Echauz, J., Grimes, D. B. & Litt, B. The statistics of a practical seizure warning system. J Neural Eng 5, 392-401, (2008).
  12. Winterhalder, M. et al. The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods. Epilepsy Behav. 4, 318-325, (2003).
  13. Kuhlmann, L. et al. Epilepsyecosystem.org: Crowd-Sourcing Reproducible Seizure Prediction with Long-Term Human Intracranial EEG. Brain, In Press, (2018).
  14. Gadhoumi, K., Gotman, J. & Lina, J. M. Scale invariance properties of intracerebral EEG improve seizure prediction in mesial temporal lobe epilepsy. PLoS One 10, e0121182, (2015).
  15. Karoly, P. J. et al. The circadian profile of epilepsy improves seizure forecasting. Brain 140, 2169-2182, (2017).
  16. Kiral-Kornek, I. et al. Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System. Ebiomedicine 27, 103-111, (2018).
  17. Truong, N. D. et al. Convolutional Neural Network for Seizure Prediction using Intracranial and Scalp Electroencephalogram. Neural Netw., In Press, (2018).
  18. Kuhlmann, L. et al. Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons. Epi. Res. 91, 214-231, (2010).
  19. Schelter, B. et al. Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. Chaos 16, 013108, (2006).
  20. Andrzejak, R. G. et al. Testing the null hypothesis of the nonexistence of a preseizure state. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67, 010901, (2003).
  21. Andrzejak, R. G., Chicharro, D., Elger, C. E. & Mormann, F. Seizure prediction: any better than chance? Clin. Neurophysiol. 120, 1465-1478, (2009).
  22. Kreuz, T. et al. Measure profile surrogates: a method to validate the performance of epileptic seizure prediction algorithms. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 061915, (2004).
  23. Lehnertz, K. & Litt, B. The First International Collaborative Workshop on Seizure Prediction: summary and data description. Clin. Neurophysiol. 116, 493-505, (2005).
  24. Ihle, M. et al. EPILEPSIAE-A European epilepsy database. Comput. Methods Programs Biomed. 106, 127-138, (2012).
  25. Klatt, J. et al. The EPILEPSIAE database: an extensive electroencephalography database of epilepsy patients. Epilepsia 53, 1669-1676, (2012).
  26. Wagenaar, J. B. et al. Collaborating and sharing data in epilepsy research. J. Clin. Neurophysiol. 32, 235-239, (2015).
  27. Kini, L. G., Davis, K. A. & Wagenaar, J. B. Data integration: Combined imaging and electrophysiology data in the cloud. Neuroimage 124, 1175-1181, (2016).
  28. Schelter, B. et al. Do False Predictions of Seizures Depend on the State of Vigilance? A Report from Two Seizure-Prediction Methods and Proposed Remedies. Epilepsia 47, 2058- 2070, (2006).
  29. Freestone, D. R., Karoly, P. J. & Cook, M. J. A forward-looking review of seizure prediction. Curr. Opin. Neurol. 30, 167-173, (2017).
  30. Cook, M. J. et al. The dynamics of the epileptic brain reveal long-memory processes. Front. Neurol. 5, 217, (2014).
  31. Cook, M. J. et al. Human focal seizures are characterized by populations of fixed duration and interval. Epilepsia 57, 359-368, (2016).
  32. Gluckman, B. J. & Schevon, C. A. Seizure Prediction 6: From Mechanisms to Engineered Interventions for Epilepsy. J. Clin. Neurophysiol. 32, 181-187, (2015).
  33. Kuhlmann, L., Grayden, D. B. & Cook, M. J. Special Issue on Epilepsy Mechanisms, Models, Prediction and Control. Int. J. Neural Syst. 27, 1702001, (2017).
  34. Osorio, I., Zaveri, H. P., Frei, M. G. & Arthurs, S. in Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics (CRC Press, 2011).
  35. Richardson, M. P. & Jefferys, J. G. Introduction-Epilepsy Research UK Workshop 2010 on "Preictal Phenomena". Epilepsy Res. 97, 229-230, (2011).
  36. Schelter, B., Timmer, J. & Schulze-Bonhage, A. Seizure prediction in epilepsy: from basic mechanisms to clinical applications. (John Wiley & Sons, 2008).
  37. Tetzlaff, R., Elger, C. E. & Lehnertz, K. in Recent Advances in Predicting and Preventing Epileptic Seizures (World Scientific, 2013).
  38. Zaveri, H. P., Frei, M. G., Arthurs, S. & Osorio, I. Seizure prediction: the Fourth International Workshop. Epilepsy Behav. 19, 1-3, (2010).
  39. Brinkmann, B. H. et al. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain 139, 1713-1722, (2016).
  40. Howbert, J. J. et al. Forecasting seizures in dogs with naturally occurring epilepsy. PLoS One 9, e81920, (2014).
  41. Karoly, P. J. et al. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain 139, 1066-1078, (2016).
  42. Payne, D. E. et al. Postictal suppression and seizure durations: A patient-specific, long- term iEEG analysis. Epilepsia 59, 1027-1036, (2018).
  43. Lange, H. H., Lieb, J. P., Engel, J., Jr. & Crandall, P. H. Temporo-spatial patterns of pre- ictal spike activity in human temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 56, 543-555, (1983).
  44. Katz, A., Marks, D. A., McCarthy, G. & Spencer, S. S. Does interictal spiking change prior to seizures? Electroencephalogr. Clin. Neurophysiol. 79, 153-156, (1991).
  45. Gotman, J. Relationships between Interictal Spiking and Seizures -Human and Experimental-Evidence. Can. J. Neurol. Sci. 18, 573-576, (1991).
  46. Malow, B. A., Lin, X., Kushwaha, R. & Aldrich, M. S. Interictal spiking increases with sleep depth in temporal lobe epilepsy. Epilepsia 39, 1309-1316, (1998).
  47. Li, S. F., Zhou, W. D., Yuan, Q. & Liu, Y. X. Seizure Prediction Using Spike Rate of Intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 880-886, (2013).
  48. Wasade, V. S. et al. Intracranial electrographic analysis of preictal spiking and ictal onset in uni-and bitemporal epilepsy. Epileptic Disord. 17, 156-164, (2015).
  49. Goncharova, II et al. The relationship between seizures, interictal spikes and antiepileptic drugs. Clin. Neurophysiol. 127, 3180-3186, (2016).
  50. Goncharova, II, Zaveri, H. P., Duckrow, R. B., Novotny, E. J. & Spencer, S. S. Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies. Epilepsia 50, 2575-2585, (2009).
  51. Goncharova, II et al. Intracranially recorded interictal spikes: relation to seizure onset area and effect of medication and time of day. Clin. Neurophysiol. 124, 2119-2128, (2013).
  52. Spencer, S. S., Goncharova, II, Duckrow, R. B., Novotny, E. J. & Zaveri, H. P. Interictal spikes on intracranial recording: behavior, physiology, and implications. Epilepsia 49, 1881- 1892, (2008).
  53. Abou-Khalil, B. The ambiguous relationship between spikes and seizures. Clin. Neurophysiol. 127, 3176-3177, (2016).
  54. Baud, M. O. et al. Multi-day rhythms modulate seizure risk in epilepsy. Nature communications 9, 88, (2018).
  55. Gotman, J. A few thoughts on ``What is a seizure?''. Epilepsy Behav. 22, S2-S3, (2011).
  56. Staley, K. Molecular mechanisms of epilepsy. Nat. Neurosci. 18, 367-372, (2015).
  57. Terry, J. R., Benjamin, O. & Richardson, M. P. Seizure generation: the role of nodes and networks. Epilepsia 53, e166-169, (2012).
  58. Blumenfeld, H. Cellular and network mechanisms of spike-wave seizures. Epilepsia 46 Suppl 9, 21-33, (2005).
  59. Schevon, C. A. et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage 35, 140-148, (2007).
  60. Ortega, G. J., Menendez de la Prida, L., Sola, R. G. & Pastor, J. Synchronization clusters of interictal activity in the lateral temporal cortex of epileptic patients: intraoperative electrocorticographic analysis. Epilepsia 49, 269-280, (2008).
  61. Gazit, T. et al. Time-frequency characterization of electrocorticographic recordings of epileptic patients using frequency-entropy similarity: a comparison to other bi-variate measures. J. Neurosci. Methods 194, 358-373, (2011).
  62. Palmigiano, A., Pastor, J., Garcia de Sola, R. & Ortega, G. J. Stability of synchronization clusters and seizurability in temporal lobe epilepsy. PLoS ONE [Electronic Resource] 7, e41799, (2012).
  63. Towle, V. L., Carder, R. K., Khorasani, L. & Lindberg, D. Electrocorticographic coherence patterns. J. Clin. Neurophysiol. 16, 528-547, (1999).
  64. Towle, V. L. et al. Identification of the sensory/motor area and pathologic regions using ECoG coherence. Electroencephalogr. Clin. Neurophysiol. 106, 30-39, (1998).
  65. Zaveri, H. P. et al. Localization-related epilepsy exhibits significant connectivity away from the seizure-onset area. Neuroreport 20, 891-895, (2009).
  66. Zaveri, H. P., Pincus, S. M., Goncharova, I. I., Duckrow, R. B. & Spencer, S. S. in Proc. of SPIE. 70740T-70741.
  67. Frei, M. G. et al. Controversies in epilepsy: debates held during the Fourth International Workshop on Seizure Prediction. Epilepsy Behav. 19, 4-16, (2010).
  68. Warren, C. P. et al. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J. Neurophysiol. 104, 3530-3539, (2010).
  69. Varotto, G., Tassi, L., Franceschetti, S., Spreafico, R. & Panzica, F. Epileptogenic networks of type II focal cortical dysplasia: a stereo-EEG study. Neuroimage 61, 591-598, (2012). Tomlinson, S. B., Porter, B. E. & Marsh, E. D. Interictal network synchrony and local heterogeneity predict epilepsy surgery outcome among pediatric patients. Epilepsia 58, 402-411, (2017).
  70. Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319-332, (2017).
  71. Eissa, T. L. & Schevon, C. A. The role of computational modelling in seizure localization. Brain 140, 254-256, (2017).
  72. Lee, H. W. et al. Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity. Neurology 83, 2269-2277, (2014).
  73. Constable, R. T. et al. Potential use and challenges of functional connectivity mapping in intractable epilepsy. Front. Neurol. 4, 39, (2013).
  74. Zhang, X. et al. Social network theory applied to resting-state fMRI connectivity data in the identification of epilepsy networks with iterative feature selection. J. Neurosci. Methods 199, 129-139, (2011).
  75. Negishi, M., Martuzzi, R., Novotny, E. J., Spencer, D. D. & Constable, R. T. Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 52, 1733-1740, (2011). Elisevich, K. et al. An assessment of MEG coherence imaging in the study of temporal lobe epilepsy. Epilepsia 52, 1110-1119, (2011).
  76. Nissen, I. A. et al. Identifying the epileptogenic zone in interictal resting-state MEG source- space networks. Epilepsia 58, 137-148, (2017).
  77. Englot, D. J. et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia 56, 949-958, (2015).
  78. Englot, D. J. et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain 138, 2249-2262, (2015).
  79. Englot, D. J., Konrad, P. E. & Morgan, V. L. Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia 57, 1546-1557, (2016).
  80. Dickten, H., Porz, S., Elger, C. E. & Lehnertz, K. Weighted and directed interactions in evolving large-scale epileptic brain networks. Sci. Rep. 6, 34824, (2016).
  81. Lehnertz, K., Dickten, H., Porz, S., Helmstaedter, C. & Elger, C. E. Predictability of uncontrollable multifocal seizures -towards new treatment options. Sci. Rep. 6, 24584, (2016). Sunderam, S., Osorio, I. & Frei, M. G. Epileptic seizures are temporally interdependent under certain conditions. Epilepsy Res. 76, 77-84, (2007).
  82. Ouyang, G., Li, X., Dang, C. & Richards, D. A. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats. Clin. Neurophysiol. 119, 1747-1755, (2008).
  83. Ngamga, E. J. et al. Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data. Phys Lett A 380, 1419-1425, (2016).
  84. Staniek, M. & Lehnertz, K. Symbolic transfer entropy: inferring directionality in biosignals. Biomed. Tech. (Berl.) 54, 323-328, (2009).
  85. Stamoulis, C., Gruber, L. J., Schomer, D. L. & Chang, B. S. High-frequency neuronal network modulations encoded in scalp EEG precede the onset of focal seizures. Epilepsy Behav. 23, 471-480, (2012).
  86. Dickten, H. & Lehnertz, K. Identifying delayed directional couplings with symbolic transfer entropy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 062706, (2014).
  87. Lehnertz, K. & Dickten, H. Assessing directionality and strength of coupling through symbolic analysis: an application to epilepsy patients. Philos T R Soc A 373, 20140094, (2015). Reijneveld, J. C., Ponten, S. C., Berendse, H. W. & Stam, C. J. The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317-2331, (2007).
  88. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186-198, (2009).
  89. Richardson, M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clin. Neurophysiol. 121, 1153-1175, (2010).
  90. Kramer, M. A. & Cash, S. S. Epilepsy as a Disorder of Cortical Network Organization. Neuroscientist 18, 360-372, (2012).
  91. van Diessen, E., Diederen, S. J. H., Braun, K. P. J., Jansen, F. E. & Stam, C. J. Functional and structural brain networks in epilepsy: What have we learned? Epilepsia 54, 1855-1865, (2013). Lehnertz, K. et al. Evolving networks in the human epileptic brain. Physica D-Nonlinear Phenomena 267, 7-15, (2014).
  92. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683- 695, (2014).
  93. Yaffe, R. B. et al. Physiology of functional and effective networks in epilepsy. Clin. Neurophysiol. 126, 227-236, (2015).
  94. Bertram, E. H., Zhang, D. X., Mangan, P., Fountain, N. & Rempe, D. Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network. Epilepsy Res. 32, 194-205, (1998).
  95. Bragin, A., Wilson, C. L. & Engel, J., Jr. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41 Suppl 6, S144-152, (2000).
  96. Spencer, S. S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43, 219-227, (2002).
  97. Schindler, K., Leung, H., Elger, C. E. & Lehnertz, K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130, 65-77, (2007). Schindler, K., Elger, C. E. & LehnertZ, K. Increasing synchronization may promote seizure termination: Evidence from status epilepticus. Clin. Neurophysiol. 118, 1955-1968, (2007).
  98. Kramer, M. A., Kolaczyk, E. D. & Kirsch, H. E. Emergent network topology at seizure onset in humans. Epilepsy Res. 79, 173-186, (2008).
  99. Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E. & Lehnertz, K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18, 033119, (2008).
  100. Valton, L. et al. Functional interactions in brain networks underlying epileptic seizures in bilateral diffuse periventricular heterotopia. Clin. Neurophysiol. 119, 212-223, (2008).
  101. Kramer, M. A. et al. Coalescence and fragmentation of cortical networks during focal seizures. J. Neurosci. 30, 10076-10085, (2010).
  102. Bialonski, S., Wendler, M. & Lehnertz, K. Unraveling spurious properties of interaction networks with tailored random networks. PLoS One 6, e22826, (2011).
  103. Kramer, M. A. et al. Human seizures self-terminate across spatial scales via a critical transition. Proc. Natl. Acad. Sci. U. S. A. 109, 21116-21121, (2012). Stamoulis, C., Schomer, D. L. & Chang, B. S. Information theoretic measures of network coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure termination. Epilepsy Res. 105, 299-315, (2013).
  104. Liao, W. et al. Dynamical intrinsic functional architecture of the brain during absence seizures. Brain Struct Funct 219, 2001-2015, (2014).
  105. Afra, P., Jouny, C. C. & Bergey, G. K. Termination patterns of complex partial seizures: An intracranial EEG study. Seizure 32, 9-15, (2015).
  106. Geier, C., Bialonski, S., Elger, C. E. & Lehnertz, K. How important is the seizure onset zone for seizure dynamics? Seizure 25, 160-166, (2015).
  107. Steimer, A., Zubler, F. & Schindler, K. Chow-Liu trees are sufficient predictive models for reproducing key features of functional networks of periictal EEG time-series. Neuroimage 118, 520-537, (2015).
  108. Gupta, D., Ossenblok, P. & van Luijtelaar, G. Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy: a MEG study. Med. Biol. Eng. Comput. 49, 555-565, (2011).
  109. Takahashi, H., Takahashi, S., Kanzaki, R. & Kawai, K. State-dependent precursors of seizures in correlation-based functional networks of electrocorticograms of patients with temporal lobe epilepsy. Neurol. Sci. 33, 1355-1364, (2012).
  110. Clemens, B. et al. Neurophysiology of juvenile myoclonic epilepsy: EEG-based network and graph analysis of the interictal and immediate preictal states. Epilepsy Res. 106, 357-369, (2013). Geier, C. & Lehnertz, K. Long-term variability of importance of brain regions in evolving epileptic brain networks. Chaos 27, 043112, (2017).
  111. Burns, S. P. et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl. Acad. Sci. U. S. A. 111, E5321-5330, (2014).
  112. Kuhnert, M. T., Elger, C. E. & Lehnertz, K. Long-term variability of global statistical properties of epileptic brain networks. Chaos 20, 043126, (2010).
  113. Geier, C., Lehnertz, K. & Bialonski, S. Time-dependent degree-degree correlations in epileptic brain networks: from assortative to dissortative mixing. Front. Hum. Neurosci. 9, 462, (2015).
  114. Spencer, D. D., Gerrard, J. L. & Zaveri, H. P. The roles of surgery and technology in understanding focal epilepsy and its comorbidities. Lancet Neurol. 17, 373-382, (2018).
  115. Deisseroth, K. & Schnitzer, M. J. Engineering approaches to illuminating brain structure and dynamics. Neuron 80, 568-577, (2013).
  116. Patil, A. C. & Thakor, N. V. Implantable neurotechnologies: a review of micro-and nanoelectrodes for neural recording. Med. Biol. Eng. Comput. 54, 23-44, (2016).
  117. Stead, M. et al. Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133, 2789-2797, (2010).
  118. Truccolo, W. et al. Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 635-641, (2011).
  119. Schevon, C. A. et al. Evidence of an inhibitory restraint of seizure activity in humans. Nature communications 3, 1060, (2012).
  120. Hu, S. Q. et al. Increase trend of correlation and phase synchrony of microwire iEEG before macroseizure onset. Cogn. Neurodyn. 8, 111-126, (2014).
  121. Gast, H. et al. Burst firing of single neurons in the human medial temporal lobe changes before epileptic seizures. Clin. Neurophysiol. 127, 3329-3334, (2016).
  122. Smith, E. H. et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nature communications 7, 11098, (2016).
  123. Petroff, O. A. et al. Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43, 703-710, (2002).
  124. Cavus, I. et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann. Neurol. 57, 226-235, (2005).
  125. DiNuzzo, M., Mangia, S., Maraviglia, B. & Giove, F. Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res. 108, 995-1012, (2014).
  126. Stephens, M. L. et al. Tonic glutamate in CA1 of aging rats correlates with phasic glutamate dysregulation during seizure. Epilepsia 55, 1817-1825, (2014).
  127. Kanamori, K. & Ross, B. D. Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Res. 1371, 180-191, (2011).
  128. Kanamori, K. & Ross, B. D. Electrographic seizures are significantly reduced by in vivo inhibition of neuronal uptake of extracellular glutamine in rat hippocampus. Epilepsy Res. 107, 20-36, (2013).
  129. During, M. J. & Spencer, D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341, 1607-1610, (1993).
  130. Huberfeld, G. et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat. Neurosci. 14, 627-U121, (2011).
  131. Lillis, K. P., Kramer, M. A., Mertz, J., Staley, K. J. & White, J. A. Pyramidal cells accumulate chloride at seizure onset. Neurobiol. Dis. 47, 358-366, (2012).
  132. Smith, E. H. et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nature communications 7, 11098, (2016).
  133. Tewolde, S., Oommen, K., Lie, D. Y., Zhang, Y. & Chyu, M. C. Epileptic Seizure Detection and Prediction Based on Continuous Cerebral Blood Flow Monitoring--a Review. J Healthc Eng 6, 159-178, (2015).
  134. Schwartz, T. H., Hong, S. B., Bagshaw, A. P., Chauvel, P. & Benar, C. G. Preictal changes in cerebral haemodynamics: review of findings and insights from intracerebral EEG. Epilepsy Res. 97, 252-266, (2011).
  135. Patel, K. S., Zhao, M., Ma, H. & Schwartz, T. H. Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg. Focus 34, E10, (2013).
  136. Nilsen, K. B., Haram, M., Tangedal, S., Sand, T. & Brodtkorb, E. Is elevated pre-ictal heart rate associated with secondary generalization in partial epilepsy? Seizure 19, 291-295, (2010). Delamont, R. S., Julu, P. O. O. & Jamal, G. A. Changes in a measure of cardiac vagal activity before and after epileptic seizures. Epilepsy Res. 35, 87-94, (1999).
  137. Bruno, E., Biondi, A., Richardson, M. P. & RADAR-CNS-Consortium. Pre-ictal heart rate changes: A systematic review and meta-analysis. Seizure 55, 48-56, (2018).
  138. Benuzzi, F. et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia 53, 622-630, (2012).
  139. Masterton, R. A., Carney, P. W., Abbott, D. F. & Jackson, G. D. Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia 54, 801-808, (2013).
  140. Moeller, F. et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia 49, 1510-1519, (2008).
  141. Bai, X. et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J. Neurosci. 30, 5884-5893, (2010).
  142. Carney, P. W. et al. The core network in absence epilepsy. Differences in cortical and thalamic BOLD response. Neurology 75, 904-911, (2010).
  143. Moeller, F. et al. Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 39, 1839-1849, (2008).
  144. Zhao, M. et al. Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy. Epilepsia 48, 2059-2067, (2007).
  145. Baumgartner, C. et al. Preictal SPECT in temporal lobe epilepsy: Regional cerebral blood flow is increased prior to electroencephalography-seizure onset. J. Nucl. Med. 39, 978-982, (1998).
  146. Bauer, P. R., Kalitzin, S., Zijlmans, M., Sander, J. W. & Visser, G. H. Cortical Excitability as a Potential Clinical Marker of Epilepsy: A Review of the Clinical Application of Transcranial Magnetic Stimulation. Int. J. Neural Syst. 24, 1430001, (2014).
  147. Wright, M. A., Orth, M., Patsalos, P. N., Smith, S. J. & Richardson, M. P. Cortical excitability predicts seizures in acutely drug-reduced temporal lobe epilepsy patients. Neurology 67, 1646-1651, (2006).
  148. Badawy, R., Macdonell, R., Jackson, G. & Berkovic, S. The peri-ictal state: cortical excitability changes within 24 h of a seizure. Brain 132, 1013-1021, (2009).
  149. Suffczynski, P. et al. Active paradigms of seizure anticipation: computer model evidence for necessity of stimulation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 051917, (2008).
  150. O'Sullivan-Greene, E., Mareels, I., Freestone, D., Kulhmann, L. & Burkitt, A. in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. (IEEE. p. 6428-6431).
  151. Kalitzin, S. N., Velis, D. N. & da Silva, F. H. Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 17, 310-323, (2010).
  152. Kalitzin, S., Koppert, M., Petkov, G., Velis, D. & da Silva, F. L. Computational model prospective on the observation of proictal states in epileptic neuronal systems. Epilepsy Behav. 22 Suppl 1, S102-109, (2011).
  153. Bruzzo, A. A., Gesierich, B., Rubboli, G. & Vimal, R. L. Predicting epileptic seizures with a mental simulation task: a prospective study. Epilepsy Behav. 13, 256-259, (2008).
  154. Freestone, D. R. et al. Electrical probing of cortical excitability in patients with epilepsy. Epilepsy Behav. 22 Suppl 1, S110-118, (2011).
  155. Meisel, C. et al. Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. U. S. A. 112, 14694-14699, (2015).
  156. Lytton, W. W. Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626-637, (2008).
  157. Soltesz, I. & Staley, K. Computational neuroscience in epilepsy. Vol. 6 (Academic Press, 2008). Stefanescu, R. A., Shivakeshavan, R. G. & Talathi, S. S. Computational models of epilepsy. Seizure 21, 748-759, (2012).
  158. Volman, V., Bazhenov, M. & Sejnowski, T. J. Computational models of neuron-astrocyte interaction in epilepsy. Front. Comput. Neurosci. 6, 58, (2012).
  159. Holt, A. B. & Netoff, T. I. Computational modeling of epilepsy for an experimental neurologist. Exp. Neurol. 244, 75-86, (2013).
  160. Wendling, F., Benquet, P., Bartolomei, F. & Jirsa, V. Computational models of epileptiform activity. J. Neurosci. Methods 260, 233-251, (2016).
  161. Chakravarthy, N., Sabesan, S., Tsakalis, K. & Iasemidis, L. Controlling epileptic seizures in a neural mass model. Journal of Combinatorial Optimization 17, 98-116, (2009).
  162. Shayegh, F., Fattahi, R. A., Sadri, S. & Ansari-Asl, K. A Brief Survey of Computational Models of Normal and Epileptic EEG Signals: A Guideline to Model-based Seizure Prediction. J Med Signals Sens 1, 62-72, (2011).
  163. Shayegh, F., Sadri, S., Amirfattahi, R. & Ansari-Asl, K. Proposing a two-level stochastic model for epileptic seizure genesis. J. Comput. Neurosci. 36, 39-53, (2014).
  164. Freestone, D. et al. Patient-specific neural mass modelling: stochastic and deterministic methods. Recent Advances in Predicting and Preventing Epileptic Seizures, 63-82, (2013).
  165. Freestone, D. R. et al. Seizure Prediction: Science Fiction or Soon to Become Reality? Curr. Neurol. Neurosci. Rep. 15, 73, (2015).
  166. Aram, P., Freestone, D. R., Cook, M. J., Kadirkamanathan, V. & Grayden, D. B. Model- based estimation of intra-cortical connectivity using electrophysiological data. Neuroimage 118, 563-575, (2015).
  167. Watson, P. D., Horecka, K. M., Cohen, N. J. & Ratnam, R. A Phase-Locked Loop Epilepsy Network Emulator. Neurocomputing 173, 1245-1249, (2016).
  168. Milton, J. G. Epilepsy as a dynamic disease: A tutorial of the past with an eye to the future. Epilepsy Behav. 18, 33-44, (2010).
  169. Lopes da Silva, F., Blanes, W., Parra, S. N. K. J., Suffczynski, P. & Velis, D. N. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44 (Suppl. 12), 72-83, (2003).
  170. Rabinovich, M. I., Varona, P., Selverston, A. I. & Abarbanel, H. D. I. Dynamical principles in neuroscience. Rev Mod Phys 78, 1213-1265, (2006).
  171. Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E. & Gross, T. Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol. 8, e1002312, (2012). Milton, J. G. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur. J. Neurosci. 36, 2156-2163, (2012).
  172. Suffczynski, P., Kalitzin, S. & Lopes Da Silva, F. H. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126, 467-484, (2004).
  173. Takeshita, D., Sato, Y. D. & Bahar, S. Transitions between multistable states as a model of epileptic seizure dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 051925, (2007). Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210-2230, (2014).
  174. Feldt, S., Osterhage, H., Mormann, F., Lehnertz, K. & Zochowski, M. Internetwork and intranetwork communications during bursting dynamics: Applications to seizure prediction. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 021920, (2007).
  175. Rothkegel, A. & Lehnertz, K. Multistability, local pattern formation, and global collective firing in a small-world network of non-leaky integrate-and-fire neurons. Chaos 19, 015109, (2009). Rothkegel, A. & Lehnertz, K. Recurrent events of synchrony in complex networks of pulse- coupled oscillators. Epl-Europhys Lett 95, 38001, (2011).
  176. Anderson, W. S., Azhar, F., Kudela, P., Bergey, G. K. & Franaszczuk, P. J. Epileptic seizures from abnormal networks: Why some seizures defy predictability. Epilepsy Res. 99, 202-213, (2012).
  177. Baier, G., Goodfellow, M., Taylor, P. N., Wang, Y. J. & Garry, D. J. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front. Physiol. 3, 281, (2012). Ansmann, G., Karnatak, R., Lehnertz, K. & Feudel, U. Extreme events in excitable systems and mechanisms of their generation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88, 052911, (2013).
  178. Petkov, G., Goodfellow, M., Richardson, M. P. & Terry, J. R. A critical role for network structure in seizure onset: a computational modeling approach. Front. Neurol. 5, 261, (2014). Ansmann, G., Lehnertz, K. & Feudel, U. Self-induced pattern switching on complex networks of excitable units. Phys. Rev. X 6, 011030, (2016).
  179. Schiff, S. J. Neural control engineering: the emerging intersection between control theory and neuroscience. (MIT Press, 2012).
  180. Chong, M. S., Nešić, D., Postoyan, R. & Kuhlmann, L. Parameter and state estimation of nonlinear systems using a multi-observer under the supervisory framework. IEEE Transactions on Automatic Control 60, 2336-2349, (2015).
  181. Kuhlmann, L. et al. Neural mass model-based tracking of anesthetic brain states. Neuroimage 133, 438-456, (2016).
  182. Xian, L., Qing, G. & Xiao-Li, L. Control of epileptiform spikes based on nonlinear unscented Kalman filter. Chinese Physics B 23, 010202, (2013).
  183. Taylor, P. N. et al. Optimal control based seizure abatement using patient derived connectivity. Front. Neurosci. 9, 202, (2015).
  184. Wei, Y., Ullah, G. & Schiff, S. J. Unification of neuronal spikes, seizures, and spreading depression. J. Neurosci. 34, 11733-11743, (2014).
  185. De Ciantis, A. & Lemieux, L. Localisation of epileptic foci using novel imaging modalities. Curr. Opin. Neurol. 26, 368-373, (2013).
  186. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature communications 4, 1376, (2013). Badawy, R. A., Freestone, D. R., Lai, A. & Cook, M. J. Epilepsy: Ever-changing states of cortical excitability. Neuroscience 222, 89-99, (2012).
  187. Bazaka, K. & Jacob, M. V. Implantable devices: issues and challenges. Electronics 2, 1-34, (2012). Jory, C. et al. Safe and sound? A systematic literature review of seizure detection methods for personal use. Seizure 36, 4-15, (2016).
  188. Patel, A. D. et al. Patient-centered design criteria for wearable seizure detection devices. Epilepsy Behav. 64, 116-121, (2016).
  189. Ramgopal, S. et al. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav. 37, 291-307, (2014).
  190. Van de Vel, A. et al. Non-EEG seizure detection systems and potential SUDEP prevention: State of the art: Review and update. Seizure 41, 141-153, (2016).
  191. Arthurs, S., Zaveri, H. P., Frei, M. G. & Osorio, I. Patient and caregiver perspectives on seizure prediction. Epilepsy Behav. 19, 474-477, (2010).
  192. Schulze-Bonhage, A. et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav. 18, 388-396, (2010).
  193. Hoppe, C. et al. Novel techniques for automated seizure registration: Patients' wants and needs. Epilepsy Behav. 52, 1-7, (2015).
  194. Hoppe, C., Poepel, A. & Elger, C. E. Epilepsy: accuracy of patient seizure counts. Arch. Neurol. 64, 1595-1599, (2007).
  195. Blachut, B. et al. Counting seizures: The primary outcome measure in epileptology from the patients' perspective. Seizure 29, 97-103, (2015).
  196. Elger, C. E. & Hoppe, C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 17, 279-288, (2018).
  197. Johansson, D., Malmgren, K. & Murphy, M. A. Wearable sensors for clinical applications in epilepsy, Parkinson's disease, and stroke: a mixed-methods systematic review. J. Neurol., 1-13, (2018).
  198. Vandecasteele, K. et al. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment. Sensors (Basel) 17, 2338, (2017).
  199. Gadhoumi, K., Lina, J. M., Mormann, F. & Gotman, J. Seizure prediction for therapeutic devices: A review. J. Neurosci. Methods 260, 270-282, (2016).
  200. Fisher, R. et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899-908, (2010).
  201. Sun, F. T. & Morrell, M. J. The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev. Med. Devices 11, 563-572, (2014).
  202. Yuan, H. & Silberstein, S. D. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache 56, 259-266, (2016).
  203. Duun-Henriksen, J. et al. Subdural to subgaleal EEG signal transmission: the role of distance, leakage and insulating affectors. Clin. Neurophysiol. 124, 1570-1577, (2013).
  204. Stacey, W. C. & Litt, B. Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nature Clinical Practice Neurology 4, 190-201, (2008).
  205. Brinkmann, B. H. et al. Forecasting Seizures Using Intracranial EEG Measures and SVM in Naturally Occurring Canine Epilepsy. PLoS One 10, e0133900, (2015).
  206. Gadhoumi, K., Gotman, J. & Lina, J. M. Scale invariance properties of intracerebral EEG improve seizure prediction in mesial temporal lobe epilepsy. PLoS One 10, e0121182, (2015). Gadhoumi, K., Lina, J. M. & Gotman, J. Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124, 1745-1754, (2013). Senger, V. & Tetzlaff, R. New Signal Processing Methods for the Development of Seizure Warning Devices in Epilepsy. IEEE Transactions. on Circuits and Systems I: Regular Papers 63, 609-616, (2016).
  207. Zheng, Y., Wang, G., Li, K., Bao, G. & Wang, J. Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clin. Neurophysiol. 125, 1104-1111, (2014).
  208. Aarabi, A. & He, B. A rule-based seizure prediction method for focal neocortical epilepsy. Clin. Neurophysiol. 123, 1111-1122, (2012).
  209. Park, Y., Luo, L., Parhi, K. K. & Netoff, T. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52, 1761-1770, (2011).
  210. Williamson, J. R., Bliss, D. W., Browne, D. W. & Narayanan, J. T. Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy Behav. 25, 230-238, (2012). Zhang, Z. & Parhi, K. K. Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power. IEEE Trans. Biomed. Circ. Syst. 10, 693- 706, (2015).
  211. Mirowski, P., Madhavan, D., Lecun, Y. & Kuzniecky, R. Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120, 1927-1940, (2009).
  212. Moghim, N. & Corne, D. W. Predicting epileptic seizures in advance. PloS one 9, e99334, (2014). Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T. G. & Toumazou, C. Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. PloS one 9, e96235, (2014).
  213. Aarabi, A. & He, B. Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach. Clin. Neurophysiol. 125, 930-940, (2014).
  214. Li, S. F., Zhou, W. D., Yuan, Q. & Liu, Y. X. Seizure Prediction Using Spike Rate of Intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21, 880-886, (2013).
  215. Zhang, Z. & Parhi, K. K. in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE. p. 5748-5751).
  216. Zandi, A. S., Tafreshi, R., Javidan, M. & Dumont, G. A. Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Trans. Biomed. Eng. 60, 1401-1413, (2013).
  217. Chien, J.-H. et al. A signal regularity-based automated seizure prediction algorithm using long-term scalp EEG recordings. Cybern. Syst. Anal. 47, 586-597, (2011).
  218. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 12, 563-571 (2013).
  219. Kiral-Kornek, I. et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine 27, 103-111 (2018).
  220. Karoly, P. et al. The Circadian Profile of Epilepsy Improves Seizure Forecasting. Brain 140, 2169-2182 (2017).
  221. Kuhlmann, L. et al. Epilepsyecosystem.org: Crowd-Sourcing Reproducible Seizure Prediction with Long-Term Human Intracranial EEG. Brain In Press (2018).
  222. Feldwisch-Drentrup, H. et al. Joining the benefits: combining epileptic seizure prediction methods. Epilepsia 51, 1598-1606 (2010).
  223. Wang, S., Chaovalitwongse, W. A. & Wong, S. Online seizure prediction using an adaptive learning approach. IEEE Trans. Know. Data Eng. 25, 2854-2866 (2013).
  224. Xiao, C., Wang, S., Iasemidis, L., Wong, S. & Chaovalitwongse, W. A. An Adaptive Pattern Learning Framework to Personalize Online Seizure Prediction. IEEE Trans. Big Data, doi:10.1109/TBDATA.2017.2675982 (2017).
  225. Sackellares, J. C. et al. Predictability analysis for an automated seizure prediction algorithm. J. Clin. Neurophysiol. 23, 509-520 (2006).
  226. Kuhlmann, L. et al. Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons. Epilepsy Res. 91, 214-231 (2010).
  227. Alvarado-Rojas, C. et al. Slow modulations of high-frequency activity (40-140 Hz) discriminate preictal changes in human focal epilepsy. Sci. Rep. 4 (2014).
  228. Teixeira, C. A. et al. Epileptic seizure predictors based on computational intelligence techniques: A comparative study with 278 patients. Comput. Methods Programs Biomed. 114, 324-336 (2014).
  229. Valderrama, M. et al. Identifying an increased risk of epileptic seizures using a multi-feature EEG-ECG classification. Biomed. Sig. Proc. Control 7, 237-244 (2012).
  230. Rasekhi, J., Mollaei, M. R. K., Bandarabadi, M., Teixeira, C. A. & Dourado, A. Epileptic seizure prediction based on ratio and differential linear univariate features. J. Med. Sig. Sens. 5, 1 (2015).
  231. Rasekhi, J., Mollaei, M. R. K., Bandarabadi, M., Teixeira, C. A. & Dourado, A. Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. J. Neurosci. Methods 217, 9-16 (2013).
  232. Bandarabadi, M., Teixeira, C. A., Rasekhi, J. & Dourado, A. Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 126, 237-248 (2015).
  233. Direito, B., Teixeira, C. A., Sales, F., Castelo-Branco, M. & Dourado, A. A Realistic Seizure Prediction Study Based on Multiclass SVM. Int. J. Neural Syst. 27, 1750006 (2017).
  234. Gadhoumi, K., Gotman, J. & Lina, J. M. Scale invariance properties of intracerebral EEG improve seizure prediction in mesial temporal lobe epilepsy. PLoS One 10, e0121182 (2015). Gadhoumi, K., Lina, J.-M. & Gotman, J. Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124, 1745-1754 (2013). Senger, V. & Tetzlaff, R. New Signal Processing Methods for the Development of Seizure Warning Devices in Epilepsy. IEEE Trans. Circuits Syst. I: Regular Papers 63, 609-616 (2016). Zheng, Y., Wang, G., Li, K., Bao, G. & Wang, J. Epileptic seizure prediction using phase synchronization based on bivariate empirical mode decomposition. Clin. Neurophysiol. 125, 1104-1111 (2014).
  235. Aarabi, A. & He, B. A rule-based seizure prediction method for focal neocortical epilepsy. Clin. Neurophysiol. 123, 1111-1122 (2012).
  236. Park, Y., Luo, L., Parhi, K. K. & Netoff, T. Seizure prediction with spectral power of EEG using cost sensitive support vector machines. Epilepsia 52, 1761-1770 (2011).
  237. Williamson, J. R., Bliss, D. W., Browne, D. W. & Narayanan, J. T. Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy Behav. 25, 230-238 (2012). Zhang, Z. & Parhi, K. K. Low-Complexity Seizure Prediction From iEEG/sEEG Using Spectral Power and Ratios of Spectral Power. IEEE Trans. Biomed. Circ. Syst. 10, 693-706 (2015).
  238. Mirowski, P., Madhavan, D., Lecun, Y. & Kuzniecky, R. Classification of patterns of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120, 1927-1940 (2009).
  239. Moghim, N. & Corne, D. W. Predicting epileptic seizures in advance. PloS one 9, e99334 (2014). Eftekhar, A., Juffali, W., El-Imad, J., Constandinou, T. G. & Toumazou, C. Ngram-derived pattern recognition for the detection and prediction of epileptic seizures. PloS one 9, e96235 (2014).
  240. Aarabi, A. & He, B. Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach. Clin. Neurophysiol. 125, 930-940 (2014).
  241. Li, S., Zhou, W., Yuan, Q. & Liu, Y. Seizure prediction using spike rate of intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 880-886 (2013).
  242. Zhang, Z. & Parhi, K. K. in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). (IEEE. p. 5748-5751).
  243. Zandi, A. S., Tafreshi, R., Javidan, M. & Dumont, G. A. Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Trans. Biomed. Eng. 60, 1401-1413 (2013).
  244. Chien, J.-H. et al. A signal regularity-based automated seizure prediction algorithm using long-term scalp EEG recordings. Cybern. Syst. Anal. 47, 586-597 (2011).