The Gribov problem in noncommutative gauge theory
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887818501190Abstract
After reviewing Gribov ambiguity of non-Abelian gauge theories, a phenomenon related to the topology of the bundle of gauge connections, we show that there is a similar feature for noncommutative QED over Moyal space, despite the structure group being Abelian, and we exhibit an infinite number of solutions for the equation of Gribov copies. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.
References (32)
- V. N. Gribov, Quantization of Nonabelian Gauge Theories, Nucl. Phys. B 139 (1978) 1.
- I. M. Singer "Some Remarks on the Gribov Ambiguity" Commun. Math. Phys. 60, 7 (1978)
- M. S. Narasimhan and T. R. Ramadas, "Geometry of SU(2) Gauge Fields," Commun. Math. Phys. 67 (1979) 121. doi:10.1007/BF01221361
- F. Canfora, M. Kurkov, L. Rosa and P. Vitale, "The Gribov problem in Noncommutative QED," JHEP 1601, 014 (2016) [arXiv:1505.06342 [hep-th]].
- V. Parameswaran Nair. "Quantum Field Theory. A Modern Perspective" Springer Ed. (2004)
- S. Galluccio, F. Lizzi and P. Vitale, "Twisted Noncommutative Field Theory with the Wick-Voros and Moyal Products," Phys. Rev. D 78 (2008) 085007 doi:10.1103/PhysRevD.78.085007 [arXiv:0810.2095 [hep-th]].
- V. G. Kupriyanov and P. Vitale, "Noncommutative R d via closed star product," JHEP 1508 (2015) 024 doi:10.1007/JHEP08(2015)024 [arXiv:1502.06544 [hep-th]].
- I. E. Segal, "Quantized differential forms", Topology, 8 (1967) 147; "Quantization of the de Rham complex", Proc. Sympos. Pure Math., 16 (1970) 205.
- M. Dubois-Violette, "Dérivations et calcul différentiel non commutatif", C.R. Acad. Sci. Paris, Série I, 307 (1988) 403.
- M. Dubois-Violette, P.W. Michor, "Dérivations et calcul différentiel non commutatif II", C.R. Acad. Sci. Paris, Série I, 319 (1994) 927.
- G. Landi and G. Marmo "Algebraic differential calculus for gauge theories" Nucl.Phys.Proc.Suppl. 18A, (1990) 171.
- J.-C. Wallet, Derivations of the Moyal algebra and noncommutative gauge theories, SIGMA 5 (2009) 013.
- E. Cagnache, T. Masson and J-C. Wallet, "Noncommutative Yang-Mills-Higgs ac- tions from derivation basisd differential calculus", J. Noncommut. Geom. 5 (2011) 39, [arXiv:0804.3061].
- P. Martinetti, P. Vitale and J. C. Wallet, "Noncommutative gauge theories on R 2 θ as matrix models," JHEP 1309, 051 (2013) doi:10.1007/JHEP09(2013)051 [arXiv:1303.7185 [hep-th]].
- A. Géré, P. Vitale and J. C. Wallet, "Quantum gauge theories on noncommutative three- dimensional space," Phys. Rev. D 90, 045019 (2014) doi:10.1103/PhysRevD.90.045019 [arXiv:1312.6145 [hep-th]].
- G. Marmo, P. Vitale and A. Zampini, Noncommutative differential calculus for Moyal sub- algebras, J. Geom. Phys. 56 (2006) 611
- I. Chepelev and R. Roiban, "Renormalization of quantum field theories on noncommutative R d . 1. Scalars," JHEP 0005 (2000) 037 [hep-th/9911098].
- S. Minwalla, M. Van Raamsdonk and N. Seiberg, "Noncommutative perturbative dynam- ics," JHEP 0002 (2000) 020 [hep-th/9912072].
- M. Hayakawa "Perturbative analysis on infrared aspects of noncommutative QED on R 4 ," Phys. Lett. B 478 (2000) 394 [hep-th/9912094].
- A. Matusis, L. Susskind and N. Toumbas, "The IR/UV connection in the noncommutative gauge theories," JHEP 0012 (2000) 002 [hep-th/0002075].
- D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and M. Wohlgenannt, "Translation- invariant models for noncommutative gauge fields," J. Phys. A 41 (2008) 252002 [arXiv:0804.1914 [hep-th]].
- D. N. Blaschke, A. Rofner, R. I. P. Sedmik and M. Wohlgenannt, "On Non-Commutative U*(1) Gauge Models and Renormalizability," J. Phys. A 43 (2010) 425401 [arXiv:0912.2634 [hep-th]].
- D. N. Blaschke, F. Gieres, F. Heindl, M. Schweda and M. Wohlgenannt, BPHZ renor- malization and its application to non-commutative field theory, Eur. Phys. J. C 73, 2566 (2013) [arXiv:1307.4650 [hep-th]].
- R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, A Translation-invariant renormalizable noncommutative scalar model", Commun. Math. Phys. 287 (2009) 275 [arXiv:0802.0791 [math-ph]].
- A. Tanasa and P. Vitale, "Curing the UV/IR mixing for field theories with translation- invariant products," Phys. Rev. D 81 (2010) 065008 doi:10.1103/PhysRevD.81.065008 [arXiv:0912.0200 [hep-th]].
- G. F. Dell'Antonio, D. Zwanziger, Ellipsoidal bound on the Gribov horizon contradicts the perturbative renormalization group, Nucl. Phys. B 326, (1989) 333; Every gauge orbit passes inside the Gribov horizon Comm. Math. Phys. 138, 291-299 (1991).
- M. de Cesare, G. Esposito, H. Ghorbani, Size of the Gribov region in curved spacetime, Phys. Rev. D 88, 087701 (2013).
- F. Canfora, A. Giacomini and J. Oliva, Gribov pendulum in the Coulomb gauge on curved spaces, Phys. Rev. D 84, 105019 (2011).
- D. Zwanziger Action from the Gribov horizon, Nucl. Phys. B 321, (1989) 591; Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323, (1989) 513;
- G. F. Dell'Antonio, D. Zwanziger, Every gauge orbit passes inside the Gribov horizon Comm. Math. Phys. 138, 291-299 (1991).
- D. N. Blaschke, "Aspects of perturbative quantum field theory on non-commutative spaces," PoS CORFU2015, 104 (2016) arXiv:1601.03109 [hep-th].
- A. Pinzul and A. Stern, Gauge Theory of the Star Product, Nucl. Phys. B 791, 284 (2008) [arXiv:0705.1785 [hep-th]].