Academia.eduAcademia.edu

Outline

The Gribov problem in noncommutative gauge theory

International Journal of Geometric Methods in Modern Physics

https://doi.org/10.1142/S0219887818501190

Abstract

After reviewing Gribov ambiguity of non-Abelian gauge theories, a phenomenon related to the topology of the bundle of gauge connections, we show that there is a similar feature for noncommutative QED over Moyal space, despite the structure group being Abelian, and we exhibit an infinite number of solutions for the equation of Gribov copies. This is a genuine effect of noncommutative geometry which disappears when the noncommutative parameter vanishes.

References (32)

  1. V. N. Gribov, Quantization of Nonabelian Gauge Theories, Nucl. Phys. B 139 (1978) 1.
  2. I. M. Singer "Some Remarks on the Gribov Ambiguity" Commun. Math. Phys. 60, 7 (1978)
  3. M. S. Narasimhan and T. R. Ramadas, "Geometry of SU(2) Gauge Fields," Commun. Math. Phys. 67 (1979) 121. doi:10.1007/BF01221361
  4. F. Canfora, M. Kurkov, L. Rosa and P. Vitale, "The Gribov problem in Noncommutative QED," JHEP 1601, 014 (2016) [arXiv:1505.06342 [hep-th]].
  5. V. Parameswaran Nair. "Quantum Field Theory. A Modern Perspective" Springer Ed. (2004)
  6. S. Galluccio, F. Lizzi and P. Vitale, "Twisted Noncommutative Field Theory with the Wick-Voros and Moyal Products," Phys. Rev. D 78 (2008) 085007 doi:10.1103/PhysRevD.78.085007 [arXiv:0810.2095 [hep-th]].
  7. V. G. Kupriyanov and P. Vitale, "Noncommutative R d via closed star product," JHEP 1508 (2015) 024 doi:10.1007/JHEP08(2015)024 [arXiv:1502.06544 [hep-th]].
  8. I. E. Segal, "Quantized differential forms", Topology, 8 (1967) 147; "Quantization of the de Rham complex", Proc. Sympos. Pure Math., 16 (1970) 205.
  9. M. Dubois-Violette, "Dérivations et calcul différentiel non commutatif", C.R. Acad. Sci. Paris, Série I, 307 (1988) 403.
  10. M. Dubois-Violette, P.W. Michor, "Dérivations et calcul différentiel non commutatif II", C.R. Acad. Sci. Paris, Série I, 319 (1994) 927.
  11. G. Landi and G. Marmo "Algebraic differential calculus for gauge theories" Nucl.Phys.Proc.Suppl. 18A, (1990) 171.
  12. J.-C. Wallet, Derivations of the Moyal algebra and noncommutative gauge theories, SIGMA 5 (2009) 013.
  13. E. Cagnache, T. Masson and J-C. Wallet, "Noncommutative Yang-Mills-Higgs ac- tions from derivation basisd differential calculus", J. Noncommut. Geom. 5 (2011) 39, [arXiv:0804.3061].
  14. P. Martinetti, P. Vitale and J. C. Wallet, "Noncommutative gauge theories on R 2 θ as matrix models," JHEP 1309, 051 (2013) doi:10.1007/JHEP09(2013)051 [arXiv:1303.7185 [hep-th]].
  15. A. Géré, P. Vitale and J. C. Wallet, "Quantum gauge theories on noncommutative three- dimensional space," Phys. Rev. D 90, 045019 (2014) doi:10.1103/PhysRevD.90.045019 [arXiv:1312.6145 [hep-th]].
  16. G. Marmo, P. Vitale and A. Zampini, Noncommutative differential calculus for Moyal sub- algebras, J. Geom. Phys. 56 (2006) 611
  17. I. Chepelev and R. Roiban, "Renormalization of quantum field theories on noncommutative R d . 1. Scalars," JHEP 0005 (2000) 037 [hep-th/9911098].
  18. S. Minwalla, M. Van Raamsdonk and N. Seiberg, "Noncommutative perturbative dynam- ics," JHEP 0002 (2000) 020 [hep-th/9912072].
  19. M. Hayakawa "Perturbative analysis on infrared aspects of noncommutative QED on R 4 ," Phys. Lett. B 478 (2000) 394 [hep-th/9912094].
  20. A. Matusis, L. Susskind and N. Toumbas, "The IR/UV connection in the noncommutative gauge theories," JHEP 0012 (2000) 002 [hep-th/0002075].
  21. D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and M. Wohlgenannt, "Translation- invariant models for noncommutative gauge fields," J. Phys. A 41 (2008) 252002 [arXiv:0804.1914 [hep-th]].
  22. D. N. Blaschke, A. Rofner, R. I. P. Sedmik and M. Wohlgenannt, "On Non-Commutative U*(1) Gauge Models and Renormalizability," J. Phys. A 43 (2010) 425401 [arXiv:0912.2634 [hep-th]].
  23. D. N. Blaschke, F. Gieres, F. Heindl, M. Schweda and M. Wohlgenannt, BPHZ renor- malization and its application to non-commutative field theory, Eur. Phys. J. C 73, 2566 (2013) [arXiv:1307.4650 [hep-th]].
  24. R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, A Translation-invariant renormalizable noncommutative scalar model", Commun. Math. Phys. 287 (2009) 275 [arXiv:0802.0791 [math-ph]].
  25. A. Tanasa and P. Vitale, "Curing the UV/IR mixing for field theories with translation- invariant products," Phys. Rev. D 81 (2010) 065008 doi:10.1103/PhysRevD.81.065008 [arXiv:0912.0200 [hep-th]].
  26. G. F. Dell'Antonio, D. Zwanziger, Ellipsoidal bound on the Gribov horizon contradicts the perturbative renormalization group, Nucl. Phys. B 326, (1989) 333; Every gauge orbit passes inside the Gribov horizon Comm. Math. Phys. 138, 291-299 (1991).
  27. M. de Cesare, G. Esposito, H. Ghorbani, Size of the Gribov region in curved spacetime, Phys. Rev. D 88, 087701 (2013).
  28. F. Canfora, A. Giacomini and J. Oliva, Gribov pendulum in the Coulomb gauge on curved spaces, Phys. Rev. D 84, 105019 (2011).
  29. D. Zwanziger Action from the Gribov horizon, Nucl. Phys. B 321, (1989) 591; Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323, (1989) 513;
  30. G. F. Dell'Antonio, D. Zwanziger, Every gauge orbit passes inside the Gribov horizon Comm. Math. Phys. 138, 291-299 (1991).
  31. D. N. Blaschke, "Aspects of perturbative quantum field theory on non-commutative spaces," PoS CORFU2015, 104 (2016) arXiv:1601.03109 [hep-th].
  32. A. Pinzul and A. Stern, Gauge Theory of the Star Product, Nucl. Phys. B 791, 284 (2008) [arXiv:0705.1785 [hep-th]].