Multi-objective optimization with artificial weed colonies
2011, Information Sciences
https://doi.org/10.1016/J.INS.2010.09.026Abstract
Invasive Weed Optimization (IWO) was recently proposed as a simple but powerful metaheuristic algorithm for real parameter optimization. IWO draws inspiration from the ecological process of weeds colonization and distribution and is capable of solving general multi-dimensional, linear and nonlinear optimization problems with appreciable efficiency. This article extends the basic IWO for tackling multi-objective optimization problems that aim at achieving
References (40)
- A. Abraham, L.C. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, Springer Verlag, London, 2005.
- S.F. Adra, T.J. Dodd, I.A. Griffin, P.J. Fleming, Convergence acceleration operator for multiobjective optimization, IEEE Transactions on Evolutionary Computation 13 (4) (2009) 825-847.
- S. Bandyopadhyay, S.K. Pal, B. Aruna, Multi-objective GAs, quantitative indices and pattern classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics 34 (5) (2004) 2009-2088.
- F.C. Chang, H.C. Huang, A refactoring method for cache-efficient swarm intelligence algorithms. Information Sciences. doi:10.1016/j.ins.2010.02.025.
- C.M. Chen, Y.P. Chen, Q. Zhang, Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on ''Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
- C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied Mechanics and Engineering 191 (11-12) (2002) 1245-1287.
- C.A.C. Coello, An updated survey of GA-based multiobjective optimization techniques, ACM Computing Surveys 32 (2) (2000) 109-143.
- C.A.C. Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, 2007.
- K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, 2001.
- K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182-197.
- M. Farina, P. Amato, A fuzzy definition of ''optimality" for many criteria optimization problems, IEEE Transactions on Systems, Man, and Cybernetics, Part A-Systems and Humans 34 (3) (2004) 315-326.
- J.E. Fieldsend, R.M. Everson, S. Singh, Multi-objective optimization in the presence of uncertainty, in: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2005), 2005, pp. 476-483.
- E.J. Hughes, Multi-objective evolutionary guidance for swarms, in: Proceedings of Congress on Evolutionary Computation, vol. 2, 2002, pp. 1127-1132.
- E.J. Hughes, Constraint handling with uncertain and noisy multi-objective evolution, in: Proceedings of the Congress on Evolutionary Computation, vol. 2, 2001, pp. 963-970.
- J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001.
- P. Koduru, S. Das, S.M. Welch, J.L. Roe, Fuzzy dominance based multi-objective GA-simplex hybrid algorithms applied to gene network models, in: K. Deb et al., (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, Lecture Notes in Computer Science, vol 3102, 2004, pp. 356-367.
- P. Koduru, Z. Dong, S. Das, S.M. Welch, J.L. Roe, E. Charbit, A multiobjective evolutionary-simplex hybrid approach for the optimization of differential equation models of gene networks, IEEE Transactions on Evolutionary Computation 12 (5) (2008).
- M. Köppen, R. Vicente-Garcia, B. Nickolay, Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization, in: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, March 2005, pp. 399-412.
- S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution 3 (GDE3) with a given set of constrained multi-objective optimization problems. IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session & Competition on ''Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
- A.R. Mallahzadeh, S. Es'haghi, A. Alipour, Design of an E-Shaped Mimo Antenna Using IWO Algorithm for Wireless Application at 5.8 GHz, Progress in Electromagnetics Research, PIER 90, 2009, pp. 187-203.
- A.R. Mallahzadeh, S. Es'haghi, H.R. Hassani, Compact U-array MIMO antenna designs using IWO algorithm, International Journal of RF and Microwave Computer-Aided Engineering 19 (5) (2009) 568-576.
- A.R. Mallahzadeh, H. Oraizi, Z. Davoodi-Rad, Application of the Invasive Weed Optimization Technique For Antenna Configurations, Progress in Electromagnetics Research PIER 79 (2008) 137-150.
- A.R. Mehrabian, A. Yousefi-Koma, Optimal positioning of piezoelectric actuators on a smart fin using bio-inspired algorithms, Aerospace Science and Technology 11 (2007) 174-182.
- A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics 1 (2006) 355-366.
- J.M. Mendel, Fuzzy logic systems for engineering, a tutorial, Proceedings of IEEE 83 (2) (2003) 100-116.
- E. Mezura-Montes (Ed.), Constraint-Handling in Evolutionary Optimization, Studies in Computational Intelligence, vol. 198, Springer, 2009.
- K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Systems Magazine 22 (2002) 52-67.
- B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-domination sorting is up to 20 times faster, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
- H.S. Rad, C. Lucas, A recommender system based on invasive weed optimization algorithm, in: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), 2007, pp. 4297-4304.
- J.R. Schott, Fault tolerant design using single and multi-criteria genetic algorithms. Ph.D. Dissertation, Massachusetts Inst. Technology, Cambridge, MA, 1995.
- K. Sindhya, A. Sinha, K. Deb, K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/ Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
- K. Smith, R. Everson, J. Fieldsend, Dominance measures for multi-objective simulated annealing, in: Proceedings of the Congress on Evolutionary Computation, CEC 2004, 2004, pp. 23-30.
- N. Srinivas, K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms, Evolutionary Computation 2 (3) (1995) 221- 248.
- R. Storn, K.V. Price, J. Lampinen, Differential Evolution -A Practical Approach to Global Optimization, Springer, Berlin, 2005.
- P.K. Tripathi, S. Bandyopadhyay, S.K. Pal, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Information Sciences 177 (22) (2007) 5033-5049.
- Y. Wang, Y. Yang, Particle swarm optimization with preference order ranking for multi-objective optimization, Information Sciences 179 (12) (2009) 1944-1959.
- Y. Wang, C. Dang, H. Li, L. Han, J. Wei, A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/Bound Constrained Multi- Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
- A. Zamuda, J. Brest, B. Boskovic, V. Zumer, Differential evolution with self-adaptation and local search for constrained multiobjective optimization, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
- Q. Zhang, A. Zhou, S.Z. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-887, University of Essex and Nanyang Technological University, 2008.
- X. Zhang, Y. Wang, G. Cui, Y. Niu, J. Xu, Application of a novel IWO to the design of encoding sequences for DNA computing, Computers Mathematics and Applications 57 (June) (2009) 2001-2008.