Academia.eduAcademia.edu

Outline

Multi-objective optimization with artificial weed colonies

2011, Information Sciences

https://doi.org/10.1016/J.INS.2010.09.026

Abstract

Invasive Weed Optimization (IWO) was recently proposed as a simple but powerful metaheuristic algorithm for real parameter optimization. IWO draws inspiration from the ecological process of weeds colonization and distribution and is capable of solving general multi-dimensional, linear and nonlinear optimization problems with appreciable efficiency. This article extends the basic IWO for tackling multi-objective optimization problems that aim at achieving

References (40)

  1. A. Abraham, L.C. Jain, R. Goldberg (Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, Springer Verlag, London, 2005.
  2. S.F. Adra, T.J. Dodd, I.A. Griffin, P.J. Fleming, Convergence acceleration operator for multiobjective optimization, IEEE Transactions on Evolutionary Computation 13 (4) (2009) 825-847.
  3. S. Bandyopadhyay, S.K. Pal, B. Aruna, Multi-objective GAs, quantitative indices and pattern classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B-Cybernetics 34 (5) (2004) 2009-2088.
  4. F.C. Chang, H.C. Huang, A refactoring method for cache-efficient swarm intelligence algorithms. Information Sciences. doi:10.1016/j.ins.2010.02.025.
  5. C.M. Chen, Y.P. Chen, Q. Zhang, Enhancing MOEA/D with guided mutation and priority update for multi-objective optimization, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on ''Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
  6. C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied Mechanics and Engineering 191 (11-12) (2002) 1245-1287.
  7. C.A.C. Coello, An updated survey of GA-based multiobjective optimization techniques, ACM Computing Surveys 32 (2) (2000) 109-143.
  8. C.A.C. Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, 2007.
  9. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, 2001.
  10. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182-197.
  11. M. Farina, P. Amato, A fuzzy definition of ''optimality" for many criteria optimization problems, IEEE Transactions on Systems, Man, and Cybernetics, Part A-Systems and Humans 34 (3) (2004) 315-326.
  12. J.E. Fieldsend, R.M. Everson, S. Singh, Multi-objective optimization in the presence of uncertainty, in: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2005), 2005, pp. 476-483.
  13. E.J. Hughes, Multi-objective evolutionary guidance for swarms, in: Proceedings of Congress on Evolutionary Computation, vol. 2, 2002, pp. 1127-1132.
  14. E.J. Hughes, Constraint handling with uncertain and noisy multi-objective evolution, in: Proceedings of the Congress on Evolutionary Computation, vol. 2, 2001, pp. 963-970.
  15. J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001.
  16. P. Koduru, S. Das, S.M. Welch, J.L. Roe, Fuzzy dominance based multi-objective GA-simplex hybrid algorithms applied to gene network models, in: K. Deb et al., (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, Lecture Notes in Computer Science, vol 3102, 2004, pp. 356-367.
  17. P. Koduru, Z. Dong, S. Das, S.M. Welch, J.L. Roe, E. Charbit, A multiobjective evolutionary-simplex hybrid approach for the optimization of differential equation models of gene networks, IEEE Transactions on Evolutionary Computation 12 (5) (2008).
  18. M. Köppen, R. Vicente-Garcia, B. Nickolay, Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization, in: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, March 2005, pp. 399-412.
  19. S. Kukkonen, J. Lampinen, Performance assessment of generalized differential evolution 3 (GDE3) with a given set of constrained multi-objective optimization problems. IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session & Competition on ''Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
  20. A.R. Mallahzadeh, S. Es'haghi, A. Alipour, Design of an E-Shaped Mimo Antenna Using IWO Algorithm for Wireless Application at 5.8 GHz, Progress in Electromagnetics Research, PIER 90, 2009, pp. 187-203.
  21. A.R. Mallahzadeh, S. Es'haghi, H.R. Hassani, Compact U-array MIMO antenna designs using IWO algorithm, International Journal of RF and Microwave Computer-Aided Engineering 19 (5) (2009) 568-576.
  22. A.R. Mallahzadeh, H. Oraizi, Z. Davoodi-Rad, Application of the Invasive Weed Optimization Technique For Antenna Configurations, Progress in Electromagnetics Research PIER 79 (2008) 137-150.
  23. A.R. Mehrabian, A. Yousefi-Koma, Optimal positioning of piezoelectric actuators on a smart fin using bio-inspired algorithms, Aerospace Science and Technology 11 (2007) 174-182.
  24. A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecological Informatics 1 (2006) 355-366.
  25. J.M. Mendel, Fuzzy logic systems for engineering, a tutorial, Proceedings of IEEE 83 (2) (2003) 100-116.
  26. E. Mezura-Montes (Ed.), Constraint-Handling in Evolutionary Optimization, Studies in Computational Intelligence, vol. 198, Springer, 2009.
  27. K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Systems Magazine 22 (2002) 52-67.
  28. B.Y. Qu, P.N. Suganthan, Multi-objective evolutionary programming without non-domination sorting is up to 20 times faster, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
  29. H.S. Rad, C. Lucas, A recommender system based on invasive weed optimization algorithm, in: Proceedings of IEEE Congress on Evolutionary Computation (CEC 2007), 2007, pp. 4297-4304.
  30. J.R. Schott, Fault tolerant design using single and multi-criteria genetic algorithms. Ph.D. Dissertation, Massachusetts Inst. Technology, Cambridge, MA, 1995.
  31. K. Sindhya, A. Sinha, K. Deb, K. Miettinen, Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/ Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
  32. K. Smith, R. Everson, J. Fieldsend, Dominance measures for multi-objective simulated annealing, in: Proceedings of the Congress on Evolutionary Computation, CEC 2004, 2004, pp. 23-30.
  33. N. Srinivas, K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms, Evolutionary Computation 2 (3) (1995) 221- 248.
  34. R. Storn, K.V. Price, J. Lampinen, Differential Evolution -A Practical Approach to Global Optimization, Springer, Berlin, 2005.
  35. P.K. Tripathi, S. Bandyopadhyay, S.K. Pal, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Information Sciences 177 (22) (2007) 5033-5049.
  36. Y. Wang, Y. Yang, Particle swarm optimization with preference order ranking for multi-objective optimization, Information Sciences 179 (12) (2009) 1944-1959.
  37. Y. Wang, C. Dang, H. Li, L. Han, J. Wei, A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/Bound Constrained Multi- Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
  38. A. Zamuda, J. Brest, B. Boskovic, V. Zumer, Differential evolution with self-adaptation and local search for constrained multiobjective optimization, in: IEEE Congress on Evolutionary Computing (CEC) 2009 (Special Session and Competition on Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms), Trondheim, Norway, 18-21 May, 2009.
  39. Q. Zhang, A. Zhou, S.Z. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-887, University of Essex and Nanyang Technological University, 2008.
  40. X. Zhang, Y. Wang, G. Cui, Y. Niu, J. Xu, Application of a novel IWO to the design of encoding sequences for DNA computing, Computers Mathematics and Applications 57 (June) (2009) 2001-2008.