The archaeology of climate change: The case for cultural diversity
2021, PNAS
https://doi.org/10.1073/PNAS.2108537118Abstract
Anthropogenic climate change is currently driving environmental transformation on a scale and at a pace that exceeds historical records. This represents an undeniably serious challenge to existing social, political, and economic systems. Humans have successfully faced similar challenges in the past, however. The archaeological record and Earth archives offer rare opportunities to observe the complex interaction between environmental and human systems under different climate regimes and at different spatial and temporal scales. The archaeology of climate change offers opportunities to identify the factors that promoted human resilience in the past and apply the knowledge gained to the present, contributing a much-needed, long-term perspective to climate research. One of the strengths of the archaeological record is the cultural diversity it encompasses, which offers alternatives to the solutions proposed from within the Western agro-industrial complex, which might not be viable cross-culturally. While contemporary climate discourse focuses on the importance of biodiversity, we highlight the importance of cultural diversity as a source of resilience. archaeology | climate change | cultural diversity | resilience | climate science
FAQs
AI
What key role does cultural diversity play in climate change resilience?
The study indicates cultural diversity is essential for human resilience, evidenced by varied historical adaptations to climate change throughout different cultures.
How does archaeological data contribute to climate change predictions?
The paper shows archaeological records allow for insights into human-environment interactions, informing future climate models and responses based on past adaptations.
What methodologies enhance understanding of past human responses to climate change?
Advancements in computational archaeology and climate modeling now allow for high-resolution analyses of human decision-making linked to environmental change.
How do contemporary Indigenous practices inform sustainable adaptation strategies?
Indigenous knowledge systems have proven critical, maintaining biodiversity and informing long-term climate adaptation practices recognized in archaeological studies.
What challenges exist in integrating climatic and archaeological datasets?
Conflicts arise from spatial associations, where proxy data from ice cores may not represent relevant conditions for human populations at different latitudes.
References (134)
- Core Writing Team, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, R. K. Pachauri, L. A. Meyer, Eds. (IPCC, Geneva, Switzerland, 2014).
- Environment and Climate Change Canada, Climate Data and Scenarios for Canada: Synthesis of Recent Observation and Modelling Results (Environment and Climate Change Canada, Gatineau, QC, Canada, 2016).
- E. Wolff et al., The Royal Society Climate Updates: What Have We Learnt Since the IPCC 5th Assessment Report? (The Royal Society, 2017).
- C. Lyon et al., Climate change research and action must look beyond 2100. EarthArXiv [Preprint] (2021). https://www.doi.org/10.31223/X5QG7D (Accessed 1 July 2021).
- G. Hambrecht et al., Archaeological sites as distributed long-term observing networks of the past (DONOP). Quat. Int. 549, 218-226 (2020).
- J. D. Ford, N. Couture, T. Bell, D. G. Clark, Climate change and Canada's north coast: Research trends, progress, and future directions. Environ. Rev. 26, 82-92 (2018).
- A. M. Haywood et al., What can palaeoclimate modelling do for you? Earth Sys. Environ. 3, 1-18 (2019).
- R. C. Jackson, A. J. Dugmore, F. Riede, Rediscovering lessons of adaptation from the past. Glob. Environ. Change 52, 58-65 (2018).
- M. J. Hudson, M. Aoyama, K. C. Hoover, J. Uchiyama, Prospects and challenges for an archaeology of global climate change. Wiley Interdiscip. Rev. Clim. Change 3, 313-328 (2012).
- S. T. Hussain, F. Riede, Paleoenvironmental humanities: Challenges and prospects of writing deep environmental histories. Wiley Interdiscip. Rev. Clim. Change 11, e667 (2020).
- D. H. Sandweiss, A. R. Kelley, Archaeological contributions to climate change research: The archaeological record as a paleoclimatic and paleoenvironmental archive. Annu. Rev. Anthropol. 41, 371-391 (2012).
- J. Cooper, M. Peros, The archaeology of climate change in the Caribbean. J. Archaeol. Sci. 37, 1226-1232 (2010).
- D. Berteaux et al., Northern protected areas will become important refuges for biodiversity tracking suitable climates. Sci. Rep. 8, 4623 (2018).
- H. Brody, Maps and Dreams (Pantheon, New York, 1981), pp. 297.
- C. Aporta, "Markers in space and time: Reflections on the nature of place names as events in the Inuit approach to the territory" in Marking the Land: Hunter- Gatherer Creation of Meaning within Their Surroundings, R. Whallon, W. A. Lovis, Eds. (Routledge, 2016), pp. 67-88.
- M. Rockman, "Landscape learning in relation to evolutionary theory" in Macroevolution in Human Prehistory: Evolutionary Theory and Processual Archaeology, A. Prentiss, I. Kuijt, J. C. Chatters, S. N. York, N. York, Eds. (Springer, New York, 2009), pp. 51-71.
- Anonymous, Utqiagvik Declaration 2018 (Inuit Circumpolar Council, 2018).
- D. Green, G. Raygorodetsky, Indigenous knowledge of a changing climate. Clim. Change 100, 239-242 (2010).
- H. Reid, Ecosystem-and community-based adaptation: Learning from community-based natural resource management. Clim. Dev. 8, 4-9 (2016).
- H. Reid, S. Huq, "Community-based adaptation: A vital approach to the threat climate change poses to the poor" (International Institute for Environment and Development Briefing Paper, IIED, London, 2007).
- I. Hodder, "Theoretical archaeology: A reactionary view" in Symbolic and Structural Archaeology, I. Hodder, Ed. (Cambridge University Press, Cambridge, 1982), pp. 1-16.
- I. Hodder, "Agency and individuals in long-term processes" in Agency in Archaeology, M.-A. Dobres, J. Robb, Eds. (Routledge, 2000), pp. 21-33.
- M. Shanks, C. Y. Tilley, Social Theory and Archaeology (Wiley, 1987).
- T. Ingold, The Perception of the Environment: Essays on Livelihood, Dwelling & Skills (Routledge, London, 2000).
- K. Kristiansen, Genes versus agents. A discussion of the widening theoretical gap in archaeology. Archaeol. Dialogues 11, 77-99 (2004).
- K. J. Gremillion, L. Barton, D. R. Piperno, Particularism and the retreat from theory in the archaeology of agricultural origins. Proc. Natl. Acad. Sci. U.S.A. 111, 6171-6177 (2014).
- G. Judkins, M. Smith, E. Keys, Determinism within human-environment research and the rediscovery of environmental causation. Geogr. J. 174, 17-29 (2008).
- E. Arkush, Explaining the past in 2010. Am. Anthropol. 113, 200-212 (2011).
- A. Izdebski et al., Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quat. Sci. Rev. 136, 5-22 (2016).
- D. Degroot et al., Towards a rigorous understanding of societal responses to climate change. Nature 591, 539-550 (2021).
- T. C. Rick, D. H. Sandweiss, Archaeology, climate, and global change in the age of humans. Proc. Natl. Acad. Sci. U.S.A. 117, 8250-8253 (2020).
- L. Dilling, M. C. Lemos, Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Glob. Environ. Change 21, 680-689 (2011).
- W. N. Adger et al., Are there social limits to adaptation to climate change? Clim. Change 93, 335-354 (2009).
- T. H. van Andel, W. Davies, Eds., Neanderthals and Modern Humans in the European Landscape of the Last Glaciation: Archaeological Results of the Stage 3 Project (McDonald Institute for Archaeological Research Monographs, McDonald Institute for Archaeological Research, Cambridge, UK, 2003).
- R. Jacobi, T. F. Higham, C. B. Ramsey, AMS radiocarbon dating of middle and upper palaeolithic bone in the British Isles: Improved reliability using ultrafiltration. J. Quat. Sci.21, 557-573 (2006).
- S. P. A. Desjardins, M. Friesen, P. D. Jordan, Looking back while moving forward: How past responses to climate change can inform future adaptation and mitigation strategies in the Arctic. Quat. Int. 549, 239-248 (2020).
- F. A. Hassan, "Human agency, climate change, and culture: An archaeological perspective" in Anthropology and Climate Change: From Encounters to Actions, S. A. Crate, M. Nuttall, Eds. (Left Coast Press, Walnut Creek, CA, 2009), pp. 39-69.
- M. Rockman, C. Hritz, Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl. Acad. Sci. U.S.A. 117, 8295-8302 (2020).
- S. P. Harrison et al., Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Chang. 5, 735 (2015).
- M. Kageyama et al., The PMIP4 contribution to CMIP6-Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033-1057 (2018).
- A. Jost et al., High-resolution simulations of the last glacial maximum climate over Europe: A solution to discrepancies with continental palaeoclimatic reconstructions? Clim. Dyn. 24, 577-590 (2005).
- M. Kageyama et al., Last glacial maximum temperatures over the North Atlantic, Europe and western Siberia: A comparison between PMIP models, MARGO sea- surface temperatures and pollen-based reconstructions. Quat. Sci. Rev. 25, 2082-2102 (2006).
- L. Ampel et al., Modest summer temperature variability during DO cycles in Western Europe. Quat. Sci. Rev. 29, 1322-1327 (2010).
- P. Ponel, Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 114, 1-41 (1995).
- O. Moine, D.-D. Rousseau, D. Jolly, M. Vianey-Liaud, Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks. Quat. Res. 57, 162-172 (2002).
- D.-D. Rousseau, Climatic transfer function from Quaternary molluscs in European loess deposits. Quat. Res. 36, 195-209 (1991).
- A. De Vernal, A. Rochon, Dinocysts as tracers of sea-surface conditions and sea-ice cover in polar and subpolar environments. IOP Conf. Ser. Earth Environ. Sci. 14, 012007 (2011).
- M. Chevalier et al., Pollen-based climate reconstruction techniques for late Quaternary studies. Earth Sci. Rev. 210, 103384 (2020).
- O. Heiri, S. J. Brooks, H. J. B. Birks, A. F. Lotter, A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445-3456 (2011).
- C. Hatt é, J. Guiot, Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: Application to the Nussloch loess sequence (Rhine Valley, Germany). Clim. Dyn. 25, 315-327 (2005).
- C. Prud'Homme et al., Palaeotemperature reconstruction during the last glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany. Earth Planet. Sci. Lett. 442, 13-20 (2016).
- C. Prud'Homme et al., δ 13 C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the last glacial in Western Europe. Quat. Sci. Rev. 179, 158-166 (2018).
- I. W. Croudace, R. G. Rothwell, Micro-XRF Studies of Sediment Cores: Applications of a Non-destructive Tool for the Environmental Sciences (Springer, 2015), vol. 17.
- C. Bronk Ramsey, Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-360 (2009).
- J. W. Williams et al., The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156-177 (2018).
- M. F. S ánchez Go ñi et al., The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth Syst. Sci. Data 9, 679-695 (2017).
- K. Gajewski et al., The Canadian Archaeological Radiocarbon Database (CARD): Archaeological 14 C dates in North America and their paleoenvironmental context. Radiocarbon 53, 371-394 (2011).
- S. E. Munoz, K. Gajewski, M. C. Peros, Synchronous environmental and cultural change in the prehistory of the northeastern United States. Proc. Natl. Acad. Sci. U.S.A. 107, 22008-22013 (2010).
- M. Blaauw, J. A. Christen, M. A. Aquino-L ópez, A review of statistics in palaeoenvironmental research. J. Agric. Biol. Environ. Stat. 25, 17-31 (2020).
- D. Kaufman et al., A global database of Holocene paleotemperature records. Sci. Data 7, 115 (2020).
- A. Moreno et al., A compilation of Western European terrestrial records 60-8 ka BP: Towards an understanding of latitudinal climatic gradients. Quat. Sci. Rev. 106, 167-185 (2014).
- O. Moine et al., The impact of last glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proc. Natl. Acad. Sci. U.S.A. 114, 6209-6214 (2017).
- I. Obreht et al., Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal. Sci. Rep. 7, 5848 (2017).
- F. Lehmkuhl et al., Loess landscapes of Europe-mapping, geomorphology, and zonal differentiation. Earth Sci. Rev. 215, 103496 (2020).
- A. C. Mix, E. Bard, R. Schneider, Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20, 627-657 (2001).
- I. K. Seierstad et al., Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ 18 O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29-46 (2014).
- S. P. E. Blockley et al., Synchronisation of palaeoenvironmental records over the last 60,000 years, and an extended INTIMATE1 event stratigraphy to 48,000 b2k. Quat. Sci. Rev. 36, 2-10 (2012).
- S. O. Rasmussen et al., A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14-28 (2014).
- S. O. Rasmussen et al., Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quat. Sci. Rev. 27, 18-28 (2008).
- W. Dansgaard et al., Evidence for general instability of past climate from a 250-kyr ice-core record. nature364, 218-220 (1993).
- J. Jouzel, C. Lorius, S. Johnsen, P. Grootes, Climate instabilities: Greenland and Antarctic records. C. R. Acad. Sci. II 319, 65-77 (1994).
- N. Shackleton, Paleoclimate. Climate change across the hemispheres. Science 291, 58-59 (2001).
- M.-M. Ouellet-Bernier, A. de Vernal, "Proxy indicators of climate in the past" in Climate Changes in the Holocene: Impacts and Human Adaptation, E. Chiotis, Ed. (CRC Press, Boca Raton, FL, 2018), pp. 41-76.
- F. St Amand et al., Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl. Acad. Sci. U.S.A. 117, 8287-8294 (2020).
- B. Bereiter et al., Revision of the EPICA Dome C CO 2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542-549 (2015).
- S. Pfahl, H. Sodemann, What controls deuterium excess in global precipitation? Clim. Past 10, 771-781 (2014).
- O. Moine et al., Intra-interstadial environmental changes in Last Glacial loess revealed by molluscan assemblages from the upper palaeolithic site of Amiens- Renancourt 1 (Somme, France). J. Quat. Sci., 10.1002/jqs.3312 (2021).
- H. Weiss et al., The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995-1004 (1993).
- M. Walker et al., Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period): Two new global boundary stratotype sections and points (GSSPs) and three new stages/subseries. Episodes 41, 213-223 (2018).
- M. Carr é et al., Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345, 1045-1048 (2014).
- M. C. Sanger, I. R. Quitmyer, C. E. Colaninno, N. Cannarozzi, D. L. Ruhl, Multiple-proxy seasonality indicators: An integrative approach to assess shell midden formations from late archaic shell rings in the coastal southeast North America. J. Island Coast. Archaeol. 15, 333-363 (2020).
- D. Kaufman et al., Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).
- S. A. Marcott, J. D. Shakun, P. U. Clark, A. C. Mix, A reconstruction of regional and global temperature for the past 11,300 years. Science339, 1198-1201 (2013).
- C. Andersson, F. S. R. Pausata, E. Jansen, B. Risebrobakken, R. J. Telford, Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean. Clim. Past 6, 179-193 (2010).
- Z. Liu et al., The Holocene temperature conundrum. Proc. Natl. Acad. Sci. U.S.A. 111, E3501-E3505 (2014).
- S. Bova, Y. Rosenthal, Z. Liu, S. P. Godad, M. Yan, Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature 589, 548-553 (2021).
- A. de Vernal, C. Hillaire-Marcel, Provincialism in trends and high frequency changes in the northwest North Atlantic during the Holocene. Global Planet. Change 54, 263-290 (2006).
- G. Leduc, R. Schneider, J.-H. Kim, G. Lohmann, Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989-1004 (2010).
- A. de Vernal et al., Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quat. Sci. Rev. 79, 111-121 (2013).
- A. Condron, P. Winsor, A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophys. Res. Lett. 38, L03705 (2011).
- G. Lohmann, M. Butzin, N. Eissner, X. Shi, C. Stepanek, Abrupt climate and weather changes across time scales. Paleoceanogr. Paleoclimatol. 35, e2019PA003782 (2020).
- N. Boivin, A. Crowther, Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273-284 (2021).
- C. T. Fisher, J. B. Hill, G. M. Feinman, The Archaeology of Environmental Change: Socionatural Legacies of Degradation and Resilience (University of Arizona Press, 2009).
- K. N. Laland, M. J. O'Brien, Niche construction theory and archaeology. J. Archaeol. Method Theory 17, 303-322 (2010).
- C. M. Barton, Complexity, social complexity, and modeling. J. Archaeol. Method Theory 21, 306-324 (2014).
- G. Latombe et al., Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum. Geosci. Model Dev. 11, 2563-2579 (2018).
- C. L écuyer, C. Hillaire-Marcel, A. Burke, M.-A. Julien, J.-F. H élie, Temperature and precipitation regime in LGM human refugia of southwestern Europe inferred from δ 13 C and δ 18 O of large mammal remains. Quat. Sci. Rev. 255, 106796 (2021).
- A. Burke et al., Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quat. Sci. Rev. 164, 217-229 (2017).
- C. D. Wren, A. Burke, Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS One 14, e0217996 (2019).
- A. Burke, J. Riel-Salvatore, C. M. Barton, Human response to habitat suitability during the Last Glacial Maximum in Western Europe. J. Quat. Sci. 33, 335-345 (2018).
- C. D. Wren, A. Costopoulos, M. Hawley, Settlement choice under conditions of rapid shoreline displacement in Wemindji Cree Territory, subarctic Quebec. Quat. Int. 549, 191-196 (2018).
- D. H. Sandweiss et al., Archaeological climate proxies and the complexities of reconstructing Holocene El Ni ño in coastal Peru. Proc. Natl. Acad. Sci. U.S.A. 117, 8271-8279 (2020).
- M. Beniston et al., Future extreme events in European climate: An exploration of regional climate model projections. Clim. Change 10.1007/s10584-006-9226-z. (2007).
- G. J. Laidler, P. Elee, T. Ikummaq, E. Joamie, C. Aporta, "Mapping Inuit Sea ice knowledge, use, and change in Nunavut, Canada (Cape Dorset, Igloolik, Pangnirtung)" in SIKU: Knowing Our Ice: Documenting Inuit Sea Ice Knowledge and Use, I. Krupnik, C. Aporta, S. Gearheard, G. J. Laidler, L. Kielsen Holm, Eds. (Springer, Dordrecht, The Netherlands, 2010), pp. 45-80.
- C. Aporta, The trail as home: Inuit and their pan-Arctic network of routes. Hum. Ecol. 37, 131-146 (2009).
- R. Potts, Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1-13 (2013).
- R. Potts, J. T. Faith, Alternating high and low climate variability: The context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5-20 (2015).
- N. Roberts et al., Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean. Quat. Sci. Rev. 184, 47-67 (2018).
- C. L. Redman, Resilience theory in archaeology. Am. Anthropol. 107, 70-77 (2005).
- L. H. Gunderson, "Resilience and adaptive cycles" in Panarchy: Understanding Transformations in Human and Natural Systems, C. S. Holling, Ed. (Island Press, 2002), pp. 25-62.
- C. L. Redman, A. P. Kinzig, Resilience of past landscapes, resilience theory, society, and the Longue Dur ée. Conserv. Ecol. 7, 14 (2003).
- M. Bradtmöller, S. Grimm, J. Riel-Salvatore, Resilience theory in archaeological practice -An annotated review. Quat. Int. 446, 3-16 (2017).
- M. Solich, M. Bradtmöller, Socioeconomic complexity and the resilience of hunter-gatherer societies. Quat. Int. 446, 109-127 (2017).
- P. Forlin, C. M. Gerrard, The archaeology of earthquakes: The application of adaptive cycles to seismically-affected communities in late medieval Europe. Quat. Int. 446, 95-108 (2017).
- J. Freeman et al., The global ecology of human population density and interpreting changes in paleo-population density. J. Archaeol. Sci. 120, 105168 (2020).
- C. M. Barton et al., Risk and resilience in the late glacial: A case study from the western Mediterranean. Quat. Sci. Rev. 184, 68-84 (2018).
- J. A. d'Alpoim Guedes, S. A. Crabtree, R. K. Bocinsky, T. A. Kohler, Twenty-first century approaches to ancient problems: Climate and society. Proc. Natl. Acad. Sci. U.S.A. 113, 14483-14491 (2016).
- D. R. Piperno, C. McMichael, M. B. Bush, Amazonia and the Anthropocene: What was the spatial extent and intensity of human landscape modification in the Amazon Basin at the end of prehistory? Holocene 25, 1588-1597 (2015).
- J. M. Marston, Archaeological approaches to agricultural economies. J. Archaeol. Res., 10.1007/s10814-020-09150-0 (2021).
- C. Fisher, Archaeology for sustainable agriculture. J. Archaeol. Res. 28, 393-441 (2020).
- B. McKibben, S. D. S. B. McKibben, Eaarth: Making a Life on a Tough New Planet (Vintage Books Canada, 2011).
- A. Caramanica et al., El Ni ño resilience farming on the north coast of Peru. Proc. Natl. Acad. Sci. U.S.A. 117, 24127-24137 (2020).
- P. E. Minnis, New Lives for Ancient and Extinct Crops (University of Arizona Press, 2014).
- R. K. Bocinsky, T. A. Kohler, A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest. Nat. Commun. 5, 5618 (2014).
- C. Strawhacker et al., A landscape perspective on climate-driven risks to food security: Exploring the relationship between climate and social transformation in the preHispanic US Southwest. Am. Antiq. 85, 427-451 (2020).
- P. Ermigiotti et al., The Pueblo Farming Project (Crow Canyon Archaeological Center, 2020).
- S. A. Crabtree, D. W. Bird, R. B. Bird, Subsistence transitions and the simplification of ecological networks in the Western Desert of Australia. Hum. Ecol. 47, 165-177 (2019).
- J. Petzold, N. Andrews, J. D. Ford, C. Hedemann, J. C. Postigo, Indigenous knowledge on climate change adaptation: A global evidence map of academic literature. Environ. Res. Lett. 15, 113007 (2020).
- H. Reid, J. Phillips, M. Heath, Natural Resilience: Healthy Ecosystems as Climate Shock Insurance (International Institute for Environment and Development, London, 2009).
- J. D. Ford et al., Including indigenous knowledge and experience in IPCC assessment reports. Nat. Clim. Chang. 6, 349-353 (2016).
- N. J. Reo et al., Invasive species, indigenous stewards, and vulnerability discourse. Am. Indian Q. 41, 201-223 (2017).
- A. C. Zeven, Landraces: A review of definitions and classifications. Euphytica 104, 127-139 (1998).
- S. B. Brush, In situ conservation of landraces in centers of crop diversity. Crop Sci. 35, 346-354 (1995).
- J. Shaw, Archaeology, climate change and environmental ethics: Diachronic perspectives on human:non-human:environment worldviews, activism and care. World Archaeol. 48, 449-465 (2016).