Academia.eduAcademia.edu

Outline

A Similarity-Based WAM for Bousi~ Prolog

2009, Bio-Inspired Systems: …

https://doi.org/10.1007/978-3-642-02478-8_31

Abstract
sparkles

AI

Bousi∼Prolog (BPL) is an extension of Prolog that implements a weak unification algorithm based on proximity relations, allowing approximate reasoning in logic programming. The operational semantics of BPL generalizes the similarity-based SLD resolution by treating approximate terms as equivalent under certain conditions, and it evaluates computations with an associated approximation degree. This paper introduces BPL's syntax and semantics, illustrating its capabilities with examples, and discusses specific directives that modify the behavior of fuzzy relations, providing a foundation for enhanced reasoning in computational scenarios.

References (11)

  1. H. Aït-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction. The MIT Press, Cambridge, MA, 1991.
  2. F. A. Fontana and F. Formato. Likelog: A logic programming language for flexible data retrieval. In Proc. of the ACM SAC, pp. 260-267, 1999.
  3. F. Fontana and F. Formato. A similarity-based resolution rule. Int. J. Intell. Syst., 17(9):853-872, 2002.
  4. P. Julián, C. Rubio, and J. Gallardo. Bousi∼Prolog: a Prolog extension language for flexible query answering. In ENTCS, pp. 16. Elsevier, 2009. (In press).
  5. P. Julián-Iranzo. A procedure for the construction of a similarity relation. In Proceedings of IPMU, pp. 489496. U. Málaga, 2008.
  6. P. Julián and C. Rubio. A wam implementation for flexible query answering. In In Proc. of the 10th IASTED ASC, pp. 262-267. ACTA Press, 2006.
  7. V. Loia, S. Senatore, and M. Sessa. Similarity-based SLD resolution and its im- plementation in an extended prolog system. In FUZZ-IEEE, pp. 650-653, 2001.
  8. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi- adjoint approach. Fuzzy Sets and Systems, 146(1):43-62, 2004.
  9. M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Theoretical Computer Science, 275(1-2):389-426, 2002.
  10. S. Shenoi and A. Melton. Proximity relations in the fuzzy relational database model. Fuzzy Sets and Systems, 100:51-62, 1999.
  11. David H. D. Warren. An Abstract Prolog Instruction Set. Technical note 309, SRI International, Menlo Park, CA., October, 1983.