Academia.eduAcademia.edu

Outline

Dyslexia: the Role of Vision and Visual Attention

2014, Current developmental disorders reports

https://doi.org/10.1007/S40474-014-0030-6

Abstract

Dyslexia is more than just difficulty with translating letters into sounds. Many dyslexics have problems with clearly seeing letters and their order. These difficulties may be caused by abnormal development of their visual "magnocellular" (M) nerve cells; these mediate the ability to rapidly identify letters and their order because they control visual guidance of attention and of eye fixations. Evidence for M cell impairment has been demonstrated at all levels of the visual system: in the retina, in the lateral geniculate nucleus, in the primary visual cortex and throughout the dorsal visuomotor "where" pathway forward from the visual cortex to the posterior parietal and prefrontal cortices. This abnormality destabilises visual perception; hence, its severity in individuals correlates with their reading deficit. Treatments that facilitate M function, such as viewing text through yellow or blue filters, can greatly increase reading progress in children with visual...

References (108)

  1. Elliott JG, Grigorenko EL. The dyslexia debate. New York: Cambridge University Press; 2014.
  2. Miles T. Dyslexia, the pattern of difficulties. London: Whurr Wyke; 1993.
  3. Siegel LS. Perspectives on dyslexia. Paediatr Child Health. 2006;11:581-7.
  4. Miles T, Miles E. Dyslexia: a hundred years on. Oxford: Oxford University Press; 1990.
  5. Legge GE, Pelli DG, Rubin GS, Schleske MM. Psychophysics of reading-I. Normal vision. Vision Res. 1985;25:239-52.
  6. Wilkins AJ. Visual stress. Oxford: Oxford University Press; 1995.
  7. Stein JF. Role of the cerebellum in the visual guidance of move- ment. Nature. 1986;323:217-21.
  8. Martinez-Conde S, Macknik SL, Hubel DH. The role of fixational eye movements in visual perception. Nat Rev Neurosci. 2004;5: 229-40.
  9. Murakami I, Cavanagh P. A jitter after-effect reveals motion-based stabilization of vision. Nature. 1998;395:798-801.
  10. Enroth-Cugell C, Robson JG. The contrast sensitivity of retinal ganglion cells in the cat. J Physiol. 1966;187:517-52.
  11. Cheng A, Eysel U, Vidyasagar T. The role of the magnocellular pathway in serial deployment of visual attention. Eur J Neurosci. 2004;20:2188-92.
  12. Ungerleider LG, Mishkin M. Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW, editors. The analysis of visual behavior. Cambridge: MIT Press; 1982.
  13. Cohen L, Lehericy S, Chochon F, Lemer C, Rivaud S, Dehaene S. Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain. 2002;125:1054-69.
  14. Martin A. Shades of Dejerine-forging a causal link between the visual word form area and reading. Neuron. 2006;50:173-5.
  15. Geschwind N, Levitsky W. Human brain: left-right asymmetries in temporal speech region. Science. 1968;161:186-7.
  16. Vidyasagar TR, Pammer K. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci. 2010;14:57-63.
  17. Dehaene S. Reading in the brain: the science and evolution of a human invention. New York: Viking; 2009.
  18. Hagoort P. On Broca, brain, and binding: a new framework. Trends Cogn Sci. 2005;9:416-23.
  19. Hockfield S, Sur M. Monoclonal Cat-301 identifies Y cells in cat LGN. J Comp Neurology. 1990;300:320-30.
  20. Corriveau R, Huh G, Shatz C. Regulation of class 1 MHC gene expression in the developing and mature CNS by neural activity. Neuron. 1998;21:505-20.
  21. Skottun BC, Skoyles JR. On identifying magnocellular and parvocellular responses on the basis of contrast-response functions. Schizophr Bull. 2011;37:23-6.
  22. Lovegrove WJ, Bowling A, Badcock D, Blackwood M. Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science. 1980;210:439-40.
  23. Cornelissen P, Richardson A, Mason A, Fowler S, Stein J. Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision-Res. 1995;35: 1483-94.
  24. Bednarek DB, Grabowska A. Luminance and chromatic contrast sensitivity in dyslexia: the magnocellular deficit hypothesis revisited. Neuroreport. 2002;13:2521-5.
  25. Mclean GMT, Stuart GW, Coltheart V, Castles A. Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed? J Exp Psychol Hum Percept Perform. 2011;37: 1957-75.
  26. Maddess T, Goldberg I, Dobinson J, Wine S, Welsh AH, James AC. Testing for glaucoma with the spatial frequency doubling illusion. Vision Res. 1999;39:4258-73.
  27. Swanson WH, Sun H, Lee BB, Cao D. Responses of primate retinal ganglion cells to perimetric stimuli. Invest Ophthalmol Vis Sci. 2011;52:764-71.
  28. Pammer K, Wheatley C. Isolating the M(y)-cell response in dyslexia using the spatial frequency doubling illusion. Vis Res. 2001;41: 2139-48.
  29. Gori S, Cecchini P, Bigoni A, Molteni M, Facoetti A. Magnocellular-dorsal pathway and sub-lexical route in develop- mental dyslexia. Front Hum Neurosci. 2014;8:460.
  30. Stein JF, Haslam N, Lu G, Thorn S. Steady state visual ERPs reliably distinguish dyslexic from normal readers. Child Vision Research Society, Cardiff June 23, 2009. 2009
  31. Chase C, Jenner AR. Magnocellular visual deficits affect temporal processing of dyslexics. Ann N Y Acad Sci. 1993;682:326-9.
  32. Felmingham KL, Jakobson LS. Visual and visuomotor performance in dyslexic children. Exp Brain Res. 1995;106:467-74.
  33. Talcott JB, Hansen PC, Willis-Owen C, Mckinnell IW, Richardson AJ, Stein JF. Visual magnocellular impairment in adult develop- mental dyslexics. Neuro-Ophthalmology. 1998;20:187-201.
  34. Edwards VT, Giaschi DE, Dougherty RF, Edgell D, Bjornson BH, Lyons C, et al. Psychophysical indexes of temporal processing abnormalities in children with developmental dyslexia. Dev Neuropsychol. 2004;25:321-54.
  35. Gross-Glen K, Skottun BC, Glenn W, Kushch A, Lingua R, Dunbar M, et al. Contrast sensitivity in dyslexia. Vis Neurosci. 1995;12: 153-63.
  36. Skottun BC. On using very high temporal frequencies to isolate magnocellular contributions to psychophysical tasks. Neuropsychologia. 2013;51(8):1556-1560.
  37. Williams MJ, Stuart GW, Castles A, Mcanally KI. Contrast sensi- tivity in subgroups of developmental dyslexia. Vision Res. 2003;43: 467-77.
  38. Talcott JB, Assoku E, Stein J. Visual motion sensitivity in dyslexia: evidence for temporal and motion energy integration deficits. Neuropsychologia. 2000;38:935-43.
  39. Merigan WH, Maunsell JH. Macaque vision after magnocellular lateral geniculate lesions. Vis-Neurosci. 1990;5:347-52.
  40. Talcott JB. Sensory and cognitive constraints on information pro- cessing during reading: do the eyes have it? Contemp Psychol. 2003;48:62-5.
  41. Livingstone MS, Rosen GD, Drislane FW, Galaburda AM. Physiological and anatomical evidence for a magnocellular deficit in developmental dyslexia. Proc Natl Acad Sci U S A. 1991;88: 7943-7.
  42. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.
  43. Miall RC, Wolpert D, Stein JF. Is the cerebellum a Smith predictor? J Motor Behav. 1993;25:203-17.
  44. Eckert MA, Leonard CM, Wilke M, Eckert M, Richards T, Richards A, et al. Anatomical signatures of dyslexia in children: unique information from manual and voxel based morphometry brain mea- sures. Cortex. 2005;41:304-15.
  45. Stoodley CJ, Stein JF. The cerebellum and dyslexia. Cortex. 2011;47:101-16.
  46. Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, et al. Cerebellar morphology in developmental dys- lexia. Neuropsychologia. 2002;40:1285-92.
  47. Fawcett AJ, Nicolson RI, Dean P. Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia. 1996;46:259-83.
  48. Rao SC, Rainer G, Miller EK. Integration of what and where in the primate prefrontal cortex. Science. 1997;276:821-4.
  49. Hill GT, Raymond JE. Deficits of motion transparency perception in adult developmental dyslexics with normal unidirectional motion sensitivity. Vision Res. 2002;42:1195-203.
  50. Richardson AJ, Calvin CM, Clisby C, Schoenheimer DR, Montgomery P, Hall JA, et al. Fatty acid deficiency signs predict the severity of reading and related difficulties in dyslexic children. Prostaglandins Leukot Essent Fatty Acids. 2000;63:69-74.
  51. Talcott JB, Witton C, Mclean MF, Hansen PC, Rees A, Green GG, et al. Dynamic sensory sensitivity and children's word decoding skills. Proc Natl Acad Sci U S A. 2000;97:2952-7.
  52. Downie AL, Jakobson LS, Frisk V, Ushycky I. Periventricular brain injury, visual motion processing, and reading and spelling abilities in children who were extremely low birthweight. J Int Neuropsychol Soc. 2003;9:440-9.
  53. Samar VJ, Parasnis I. Dorsal stream deficits suggest hidden dyslexia among deaf poor readers: correlated evidence from reduced percep- tual speed and elevated coherent motion detection thresholds. Brain Cogn. 2005;58:300-11.
  54. Eden GF, Vanmeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging [see comments]. Nature. 1996;382:66-9.
  55. Demb JB, Boynton GM, Best M, Heeger DJ. Psychophysical evi- dence for a magnocellular pathway deficit in dyslexia. Vision Res. 1998;38:1555-9.
  56. Wilmer JB, Richardson AJ, Chen Y, Stein JF. Two visual motion processing deficits in developmental dyslexia associ- ated with different reading skills deficits. J Cogn Neurosci. 2004;16:528-40.
  57. Laycock R, Crewther DP, Crewther SG. Abrupt and ramped flicker- defined form shows evidence for a large magnocellular impairment in dyslexia. Neuropsychologia. 2012;50:2107-13.
  58. Skoyles J, Skottun BC. On the prevalence of magnocellular deficits in the visual system of non-dyslexic individuals. Brain Lang. 2004;88:79-82.
  59. Vidyasagar TR. Neural underpinnings of dyslexia as a disorder of visuo-spatial attention. Clin Exp Optom. 2004;87:4-10.
  60. Facoetti A, Turatto M, Lorusso ML, Mascetti GG. Orienting of visual attention in dyslexia: evidence for asymmetric hemispheric control of attention. Exp Brain Res. 2001;138:46-53.
  61. Kinsey K, Rose M, Hansen P, Richardson A, Stein J. Magnocellular mediated visual-spatial attention and reading ability. Neuroreport. 2004;15:2215-8.
  62. Facoetti A, Turatto M, Lorusso M, Mascetti G. Orienting visual attention in dyslexia. Exp Brain Res. 2001;138:46-53.
  63. Facoetti A, Paganoni P, Lorusso ML. The spatial distribution of visual attention in developmental dyslexia. Exp Brain Res. 2000;132:531-8.
  64. Iles J, Walsh V, Richardson A. Visual search performance in dys- lexia. Dyslexia. 2000;6:163-77.
  65. Ben-Yehudah G, Sackett E, Malchi-Ginzberg L, Ahissar M. Impaired temporal contrast sensitivity in dyslexics is spe- cific to retain-and-compare paradigms. Brain. 2001;124: 1381-95.
  66. Cestnick L, Coltheart M. The relationship between language-pro- cessing and visual-processing deficits in developmental dyslexia. Cognition. 1999;71:231-55.
  67. Fukushima J, Tanaka S, Williams J, Fukushima K. Voluntary con- trol of saccadic and smooth-pursuit eye movements in children with learning disorders. Brain and Development. 2005;27:579-88.
  68. Hari R, Renvall H, Tanskanen T. Left minineglect in dyslexic adults. Brain. 2001;124:1373-80.
  69. Harrar V, Tammam J, Pérez-Bellido A, Pitt A, Stein J, Spence C. Multisensory integration and attention in developmental dyslexia. Curr Biol. 2014;24:531-5.
  70. Vidyasagar TR. Neural underpinnings of dyslexia as a disorder of visuo-spatial attention [see comment]. Clinical & Experimental Optometry. 2004;87:4-10.
  71. Facoetti A, Corradi N, Ruffino M, Gori S, Zorzi M. Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia. 2010;16:226- 39.
  72. Rayner K. Do faulty eye movements cause dyslexia? Dev Neuropsychol. 1985;1:3-15.
  73. Eden GF, Stein JF, Wood HM, Wood FB. Differences in eye movements and reading problems in dyslexic and normal children. Vision-Res. 1994;34:1345-58.
  74. Solan HA, Ficarra A, Brannan JR, Rucker F. Eye movement effi- ciency in normal and reading disabled elementary school children: effects of varying luminance and wavelength. J Am Optom Assoc. 1998;69:455-64.
  75. Bucci MP, Brémond-Gignac D, Kapoula Z. Poor binocular coordi- nation of saccades in dyslexic children. Graefes Arch Clin Exp Ophthalmol. 2008;246:417-28.
  76. Kirkby JA, Webster LAD, Blythe HI, Liversedge SP. Binocular coordination during reading and non-reading tasks. Psychol Bull. 2008;134:742-63.
  77. Fischer B, Hartnegg K, Mokler A. Dynamic visual perception of dyslexic children. Perception. 2000;29:523-30.
  78. Pavlidis G. Eye movements in dyslexia. London: Macmillan; 1991.
  79. Crawford T, Higham S. Dyslexia and centre of gravity effect. Exp Brain Res. 2001;137:122-6.
  80. Hawelka S, Wimmer H. Impaired visual processing of multi-ele- ment arrays is associated with increased number of eye movements in dyslexic reading. Vis Res. 2005;45:855-63.
  81. Kuba M, Szanyi J, Gayer D, Kremlacek J, Kubova Z. Electrophysiological testing of dyslexia. Acta Med (Hradec Kralove). 2001;44:131-4.
  82. Robichon F, Besson M, Habib M. An electrophysiological study of dyslexic and control adults in a sentence reading task. Biol Psychol. 2002;59:29-53.
  83. Schulte-Körne G, Bruder J. Clinical neurophysiology of visual and auditory processing in dyslexia: a review. Clin Neurophysiol. 2010;121:1794-809.
  84. Bradley L, Bryant P. Children's reading problems. Oxford: Blackwell; 1985.
  85. Olulade OA, Napoliello EM, Eden GF. Abnormal visual motion processing is not a cause of dyslexia. Neuron. 2013;79:180-90.
  86. Mason A, Cornelissen P, Fowler S, Stein J. Contrast sensitivity, ocular dominance and specific reading disability. Clinical Vision Sciences. 1993;8:345-53.
  87. Ray NJ, Fowler S, Stein JF. Yellow filters can improve magnocellular function: motion sensitivity, convergence, accom- modation, and reading. Ann N Y Acad Sci. 2005;1039:283-93.
  88. Stein J, Fowler S. Effect of monocular occlusion on visuomotor perception and reading in dyslexic children. Lancet. 1985;2:69-73.
  89. Stein JF, Richardson AJ, Fowler MS. Monocular occlusion can improve binocular control and reading in dyslexics. Brain. 2000;123(Pt 1):164-70.
  90. Fowler MS, Mason AJ, Richardson A, Stein JF. Yellow spectacles to improve vision in children with binocular amblyopia [see com- ments]. Lancet. 1991;338:1109-10.
  91. Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci. 2008;31:27-36.
  92. Wilkins AJ, Evans BJ, Brown JA, Busby AE, Wingfield AE, Jeanes RJ, et al. Double-masked placebo-controlled trial of precision spec- tral filters in children who use coloured overlays. Ophthalmic Physiol Opt. 1994;14:365-70.
  93. Hall R, Ray N, Harries P, Stein J. A comparison of two-coloured filter systems for treating visual reading difficulties. Disability & Rehabilitation. 2013;35:2221-6.
  94. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421-7.
  95. Williams J, O'donovan M. The genetics of developmental dyslexia. Eur J Hum Genet. 2006;14:681-9.
  96. Marlow AJ, Fisher SE, Richardson AJ, Francks C, Talcott JB, Monaco AP, et al. Investigation of quantitative measures related to reading disability in a large sample of sib-pairs from the UK. Behav Genet. 2001;31(2):219-230.
  97. Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF, Cardon LR, et al. Independent genome-wide scans identify a chro- mosome 18 quantitative-trait locus influencing dyslexia. Nat Genet. 2002;30(1):86-91.
  98. Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y, et al. The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum Mol Genet. 2006;15(10):1659-66.
  99. Galaburda AM, Loturco J, Ramus F, Fitch RH, Rosen GD. From genes to behavior in developmental dyslexia. Nat Neurosci. 2006;9: 1213-7.
  100. Lahita RG. Systemic lupus erythematosus: learning disability in the male offspring of female patients and relationship to laterality. Psychoneuroendocrinology. 1988;13:385-96.
  101. Hugdahl K, Synnevag B, Satz P. Immune and autoimmune diseases in dyslexic children [published erratum appears in Neuropsychologia 1991;29:211]. Neuropsychologia. 1990;28: 673-9.
  102. Vincent A, Deacon R, Dalton P, Salmond C, Blamire AM, Pendlebury S, et al. Maternal antibody mediated dyslexia? Evidence for a pathogenic serum factor in a mother of 2 dyslexic children shown by transfer to pregnant mice shown by behavioural and MRS studies. J Neuroimmunology. 2002;45:87-9.
  103. Scerri TS, Paracchini S, Morris A, Macphie IL, Talcott J, Stein J, et al. Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS One. 2011;5:e13712.
  104. Berrettini WH, Ferraro TN, Goldin LR, Weeks DE, Detera- Wadleigh S, Nurnberger JI, et al. Chromosome 18 DNA markers and manic-depressive illness: evidence for a susceptibility gene. Proc Natl Acad Sci U S A. 1994;91:5918-21.
  105. Horrocks LA, Farooqui AA. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fat Acids. 2004;70:361-72.
  106. Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68:280-9.
  107. Richardson AJ, Montgomery P. The Oxford-Durham study: a ran- domized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics. 2005;115:1360-6.
  108. Gesch CB, Hammond SM, Hampson SE, Eves A, Crowder MJ. Influence of supplementary vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners: randomised, placebo-controlled trial. Br J Psychiatry. 2002;181: 22-8.