Academia.eduAcademia.edu

Outline

A theory of information matching

Abstract

* The theory and the mathematical modelling presented in this report has not been published elsewhere. However, different applications of the theory are under review.

References (28)

  1. BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Mar. 2003).
  2. BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertextual web search engine. In WWW (1998).
  3. BURGES, C. J. C., RAGNO, R., AND LE, Q. V. Learning to rank with nonsmooth cost functions. In NIPS (2006), pp. 193-200.
  4. CRASWELL, N., ROBERTSON, S., ZARAGOZA, H., AND TAYLOR, M. Relevance weight- ing for query independent evidence. In SIGIR (2005), SIGIR '05.
  5. DEMPSTER, A., LAIRD, N., AND RUBIN, D. Maximum likelihood from incomplete data via the em algorithm. J. Royal Statistical Society, Series B (1977).
  6. DIEBOLT, J., AND ROBERT, C. P. Estimation of finite mixture distributions through bayesian sampling. J. R. Statist. Soc B, 2 (1994), 363-375.
  7. GAO, J., YUAN, W., LI, X., DENG, K., AND NIE, J.-Y. Smoothing clickthrough data for web search ranking. In SIGIR (2009), pp. 355-362.
  8. HARTER, S. A probabilistic approach to automatic keyword indexing. Journal of the Amer- ican Society for Information Retrieval Science (1975).
  9. HOFMANN, T. Probabilistic latent semantic indexing. In SIGIR (1999), SIGIR '99.
  10. HOFMANN, T. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. (2004).
  11. HUANG, X., AND CROFT, W. B. A unified relevance model for opinion retrieval. In In CIKM (2009), CIKM '09.
  12. JONES, K. S. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28 (1972), 11-21.
  13. KOREN, Y., BELL, R. M., AND VOLINSKY, C. Matrix factorization techniques for recom- mender systems. IEEE Computer (2009).
  14. LAFFERTY, J. D., AND ZHAI, C. Document language models, query models, and risk minimization for information retrieval. In SIGIR (2001), pp. 111-119.
  15. MARON, M. E., AND KUHNS, J. L. On relevance, probabilistic indexing and information retrieval. J. ACM (1960).
  16. MEI, Q., FANG, H., AND ZHAI, C. A study of poisson query generation model for infor- mation retrieval. In In SIGIR (2007), SIGIR '07.
  17. MIZARRO, S. Relevance: The whole history. Journal of the American Society for Informa- tion Science 48(9) (1997), 321-343.
  18. PONTE, J. M., AND CROFT, W. B. A language modeling approach to information retrieval. In SIGIR (1998).
  19. ROBERTSON, S. The unified model revisited. In SIGIR 2003 Workshop on Mathemati- cal/Formal Models in Information Retrieval (2003).
  20. ROBERTSON, S., MARON, M. E., AND COOPER, W. S. Probability of relevance: a unifi- cation of two competing models for document retrieval. Information Technology: Research and Development (1982).
  21. ROBERTSON, S., AND SPARK JONES, K. Relevance weighting of search terms. Journal of the American Society for Information Science (1976).
  22. ROBERTSON, S., AND ZARAGOZA, H. The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. (2009).
  23. ROBERTSON, S. E., VAN RIJSBERGEN, C. J., AND PORTER, M. F. Probabilistic models of indexing and searching. In SIGIR (1980).
  24. ROBERTSON, S. E., AND WALKER, S. Some simple effective approximations to the 2- poisson model for probabilistic weighted retrieval. In SIGIR (1994).
  25. SARWAR, B., KARYPIS, G., KONSTAN, J., AND REIDL, J. Item-based collaborative filter- ing recommendation algorithms. In WWW (2001).
  26. SCHOLER, F., AND WILLIAMS, H. E. Query association for effective retrieval. In CIKM (2002), CIKM '02.
  27. SHARDANAND, U., AND MAES, P. Social information filtering: algorithms for automating ẅord of mouth ¨. In CHI'95 (1995).
  28. WANG, J., DE VRIES, A. P., AND REINDERS, M. J. Unified relevance models for rating prediction in collaborative filtering. ACM Trans. on Information System (TOIS) (2008).