Academia.eduAcademia.edu

Outline

Relativistic Modelling of Stable Anisotropic Super-Dense Star

2015, Reports on Mathematical Physics

https://doi.org/10.1016/S0034-4877(15)30016-1

Abstract

In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al. [1] algorithm. The anisotropic fluid solutions so obtained join continuously to Schwarzschild exterior solution across the pressure free boundary.It is observed that most of the new anisotropic solutions are well behaved and utilized to construct the super-dense star models such as neutron star and pulsars.

Key takeaways
sparkles

AI

  1. The study presents new anisotropic solutions to Einstein's equations for super-dense star models.
  2. Solutions join smoothly to Schwarzschild's exterior solution at the pressure-free boundary.
  3. Maximum mass of the star models reaches 1.7609 MΘ with radius 16.0780 km for n = -1.
  4. Redshift values for the center (Z0) and surface (Za) are calculated as 0.2570 and 0.2151 for n = -1.
  5. Physical conditions indicate well-behaved solutions except for the case n = -2, which fails stability criteria.

References (48)

  1. L. Herrera, J. Ospino, A. Di Parisco: All static spherically symmet- ric anisotropic solutions of Einstein's equations Phys. Rev. D 77 027502 (2008).
  2. R.C. Tolman: Static Solutions of Einstein's Field Equations for Spheres of Fluid Phys. Rev. 55 364 (1939).
  3. H. A. Buchdahl: General Relativistic Fluid Spheres Phys. Rev. 116 1027 (1959).
  4. B. V. Ivanov: Gravity, Astrophysics, and string '02', St. Kliment Ohridski University Press, Sofia, 2003.
  5. R. Ruderman: Pulsars: structure and dynamics Annu. Rev. Astron. Astro- phys. 10 427 (1972).
  6. V. Canuto: Neutron Stars: General Review Solvay Conf. on Astrophysics and Gravitation (Brussels, Sept., 1973).
  7. R. Kippenhahm and A. Weigert: Stellar Structure and Evolution, Springer, Berlin, 1990.
  8. A.I. Sokolov: Phase transitions in a superfluid neutron fluid J. Exp. Theor. Phys. 79 1137 (1980).
  9. J. Binney and J.S. Tremaine: Galactic Dynamics, Princeton University Press, Princeton, NJ, 1987.
  10. P. Letelier: Anisotropic fluids with two-perfect-fluid components Phys. Rev. D 22 807 (1980).
  11. S. S. Bayin: Anisotropic fluid spheres in general relativity Phys. Rev. D 26 1262 (1982).
  12. R. L. Bowers and E. P. T. Liang: Anisotropic spheres in general relativity Astrophys. J. 188, 657 (1974).
  13. H. Heintzmann and W. Hillebrandt: Neutron stars with an anisotropic equation of state: mass, redshift and stability Astron. Astrophys. 38, 51 (1975).
  14. S.D. Maharaj and R. Maartens: Anisotropic spheres with uniform energy density in general relativity Gen. Rel. Grav. 21 899 (1989).
  15. M.K. Gokhroo and A.L. Mehra: Anisotropic spheres with variable energy density in general relativity Gen. Rel. Grav. 26 (1994) 75
  16. M.S.R. Delgaty and K. Lake: Comput. Phys. Commun. 115, 395 (1998).
  17. K. Dev and M. Gleiser: Gen. Relativ. Gravit. 34, 1793 (2002).
  18. K. Komathiraj and S.D. Maharaj: J. Math. Phys. 48, 042501 (2007).
  19. S. Thirukkanesh and F.C. Regel: Pramana -J. Phys. 78, 687 (2012).
  20. M.J. Sunzu, S.D. Maharaj and S. Ray: Astrophysics and Space Science 352 719-727 (2014).
  21. T. Harko and M.K. Mak: Anisotropic relativistic stellar models Ann. Phys. 11 3 (2002).
  22. M.K. Mak and T. Harko: Anisotropic stars in general relativity Proc. R. Soc. A 459 (2003) 393.
  23. M. Chaisi and S.D.: Maharaj: Anisotropic static solutions in modelling highly compact bodies Pramana J. Phys. 66 609 (2006).
  24. S.K. Maurya and Y.K. Gupta: A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions Phys. Scr. 86 025009 (2012).
  25. S.K. Maurya and Y.K. Gupta: Charged fluid to anisotropic fluid distribu- tion in general relativity Astrophys. Space Sci. 344 243 (2013).
  26. S. K. Maurya and Y. K.Gupta: A new class of relativistic charged anisotropic super dense star Models Astrophys. Space Sci. 353 657 (2014).
  27. T. Feroze and A. A. Siddiqui Gen. Relativ. Gravit. 43 1025 (2011).
  28. N. Pant, N. Pradhan and Newton K. Singh: Journal of Gravity 2014, 380320, 9pages.
  29. N. Pant, N. Pardhan and M. Malaver: Anisotropic fluid star model in isotropic coordinates International Journal of Astrophysics and Space Sci- ence 3 1-5 (2015).
  30. N. Pant, N. Pradhan and M.H. Murad: A class of super dense stars models using charged analogues of Hajj-Boutros type relativistic fluid solutions Int. J. theor. Phys. 53 3958 (2014).
  31. P. Bhara, F. Rahaman, S. Ray and V. Chatterjeed: Eur. Phys. J. C, Possibility of higher dimensional anisotropic compact star: arXiv: sub- mit/1101295 [gr-qc] (2014).
  32. S.K. Hossein, F. Monowar, J. Rahaman, M. Naskar, M. Kalam and S. Ray Int. J. of Modern Physics D arXiv:1204.3558v2 [gr-qc] (2012).
  33. M. Kalam, F. Rahaman, S.K. Hossein Monowar and S. Ray: Euro- pean Physical Journal C, Central Density Dependent Anisotropic Compact Stars, arXiv:1301.0271v1 [physics.gen-ph] (2012).
  34. M. Consenza, L. Herrera, M. Esculpi and E. Witten: Some models of anisotropic spheres in general relativity J. Math. Phys. 22 118 (1981).
  35. K.D. Krori, P. Bargohain and R. Devi: Some exact anisotropic solutions in general relativity Can. J. Phys. 62 239 (1984).
  36. T. Singh, G.P. Singh and R. S. Srivastava: Static anisotropic fluid spheres in general relativity with non uniform density Int. J. Theor. Phys. 31 545 (1992).
  37. L.K. Patel and N.P. Mehta: An exact model of an anisotropic relativistic sphere Aust. J. Phys. 48 635 (1995).
  38. M. Malaver: Regular model for a quark star with Van der Waals modified equation of state world applied programming 3 309 (2013).
  39. M. Malaver: Strange Quark model with Quadratic equation of state Fron- tiers of Mathematics and its Applications 1 9 (2014).
  40. M. Esculpi, M. Malaver and E. Aloma: A comparative analysis of the adiabatic stability of anisotropic spherically symmetric solutions in general relativity and gravitation 39 633 (2007).
  41. L. Herrera and N.O. Santos: Local anisotropy in self-gravitating system Phy. Rep. 53 286 (1997).
  42. L. Herrera, N.O. Santos, A. Wang: Shearing expansion free spherical anisotropic fluid evaluation Phys. Rev. D 78 084026 (2008).
  43. L. Herrera et al.: Conformally flat anisotropic spheres in general relativity J. Math. Phys. 42 2129 (2001).
  44. L. Herrera et al.: Spherically symmetric dissipative anisotropic fluids: a general study Phy. Rev. D 69 084026 (2004).
  45. L. Herrera and J. Ponce de Leon: Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions J. Math. Phys. 26 2302-2307 (1985).
  46. C. W. Misner and D.H. Sharp: Relativistic Equations for Adiabatic, Spher- ically Symmetric Gravitational Collapse Phys. B 136 571 (1964).
  47. L. Herrera: Phys. Lett. A 165 206 (1992).
  48. H. Abreu, H. Hernandez and L. A. Nunez: Class. Quantum Gravit. 24 4631 (2007).