The Erdős–Turán property for a class of bases
2004, Acta Arithmetica
Abstract
AI
AI
The paper explores the Erdős–Turán property associated with a specific class of bases in additive number theory. By defining the concept of asymptotic additive bases and building on previous conjectures, it demonstrates that certain sets of integers can represent sums in numerous ways as a function of their structure. The findings suggest new avenues to validate the Erdős–Turán conjecture and highlight the conditions under which these bases exhibit the property.
References (12)
- P. Erdős, On the multiplicative representation of integers, Israel J. Math. 2 (1964), 251-261.
- -, Problems and results in additive number theory, in: Colloque sur la Théorie des Nombres (Bruxelles, 1955), Massion, Paris, 1956, 127-137.
- -, Some applications of Ramsey's theorem to additive number theory, European J. Combin. 1 (1980), 43-46.
- P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monograph. Enseign. Math. 28, Univ. Genève, 1980.
- P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
- H. Halberstam and K. F. Roth, Sequences, Springer, 1983.
- G. Hofmeister, Thin basis of order two, J. Number Theory 86 (2001), 118-132.
- T. Łuczak and T. Schoen, A remark on unique representation basis for the integers, preprint, 2003.
- M. B. Nathanson, The inverse problem for representation functions of additive basis, in: Number Theory: New York Seminar 2003, D. Chudnovsky et al. (eds.), Springer, New York, 2004, 253-262.
- J. Nešetřil and V. Rödl, Two proofs in Combinatorial Number Theory, Proc. Amer. Math. Soc. 93 (1985), 185-188.
- A. Sárközy and V. Sós, On additive representation functions, in: The Mathematics of Paul Erdős, R. L. Graham and J. Nešetřil (eds.), Springer, 1991, 129-150. Department of Applied Mathematics and Institute of Theoretical Computer Sciences (ITI) Charles University Malostranské nám. 25 11800 Praha, Czech Republic E-mail: nesetril@kam.mff.cuni.cz Department of Applied Mathematics IV Universitat Politècnica de Catalunya Jordi Girona, 1
- Barcelona, Spain E-mail: oserra@mat.upc.es Received on 31.10.2003 and in revised form on 16.2.2004