Academia.eduAcademia.edu

Outline

A robust semantics hides fewer errors

2009, FM 2009: Formal Methods

Abstract
sparkles

AI

The paper discusses the importance of robust semantics and its role in narrowing the interpretation gap between formal models and their informal implementations. With increasing complexity in engineering systems, it emphasizes the necessity for engineers to effectively interpret formal semantics to ensure correctness in operations, likening the process to looking for solutions in a bright environment rather than in the shadowy realms of ambiguity. The conclusions advocate for defining robust refinement and semantics, formal checks on changes in semantics, and respect for the composition of specifications to enhance reliability in software development.

References (23)

  1. Ltd, T.P.: The Fabulous Adventures of Nasruddin Hoja. (Ta-Ha Publishers Ltd. (UK))
  2. Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall International Series in Computer Science (1997)
  3. Valmari, A., Tienari, M.: Compositional Failure-based Semantics Models for Basic LOTOS. Formal Aspects of Computing 7 (1995) 440-468
  4. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth- ods and their Comparison. Cambridge Tracts in Theoretical Computer Science 47. Cambridge University Press (1998)
  5. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice Hall (1996)
  6. Bolton, C., Davies, J.: A singleton failures semantics for Communicating Se- quential Processes. Formal Aspects of Computing 18 (2006) 181-210
  7. Reeves, S., Streader, D.: General refinement, part one: interfaces, determin- ism and special refinement. In: Refine08 -International Refinement Workshop, Turku, Elsevier (2008) to appear.
  8. Reeves, S., Streader, D.: General refinement, part two: flexible. In: Refine08 - International Refinement Workshop, Turku, Elsevier (2008) to appear.
  9. Troelstra, A.S.: From constructivism to computer science. Theor. Comput. Sci. 211 (1999) 233-252
  10. Bridges, D., Reeves, S.: Constructive Mathematics in Theory and Programming Practice. Philosophia Mathematica 7 (1999) 65-104
  11. Derrick, J., Boiten, E.: Relational concurrent refinement. Formal Aspects of Computing 15 (2003) 182-214
  12. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced Applications. Formal Approaches to Computing and Information Technology. Springer (2001)
  13. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer- sity Press (1996)
  14. Hoare, C., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Interna- tional Series in Computer Science (1998)
  15. Hennessy, M.: Algebraic Theory of Processes. The MIT Press (1988)
  16. van Glabbeek, R.J.: Linear Time-Branching Time Spectrum I. In: CONCUR '90 Theories of Concurrency: Unification and Extension. LNCS 458, Springer-Verlag (1990) 278-297
  17. van Glabbeek, R.J.: The Linear Time -Branching Time Spectrum II. In: Inter- national Conference on Concurrency Theory. (1993) 66-81
  18. Reeves, S., Streader, D.: State-and Event-based refinement. Technical report, University of Waikato (2006) Computer Science Working Paper Series 09/2006, ISSN 1170-487X, http://researchcommons.waikato.ac.nz/cms papers/12/.
  19. He, J., Hoare, C., Sanders, J.: Data refinement refined. ESOP 86 LNCS 213 (1986) 187-196
  20. Spivey, J.M.: The Z notation: A reference manual. 2nd. edn. Prentice Hall (1992)
  21. Reeves, S., Streader, D.: Guarded operations Refinement and Simulation. Tech- nical report, University of Waikato (2009) Computer Science Technical Report 0-/2009 , http://www.cs.waikato.ac.nz/∼dstr.
  22. Boiten, E., Derrick, J.: Incompleteness of relational simulations in the blocking paradigm. In ?? ?? (2008)
  23. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)