Academia.eduAcademia.edu

Outline

Why the Perona-Malik filter works

1997

Abstract

Although the widely-used Perona{Malik lter is regarded as ill-posed, straightforward implementations are often surprisingly stable. We give an explanation for this e ect by applying a discrete nonlinear scale-space framework: a spatial discretization on a xed pixel grid gives a well-posed scale-space with many image-simplifying properties, and an explicit time discretization leads to a scheme which does not introduce additional oscillations. This explains why staircasing is essentially the only practically appearing instability.

References (27)

  1. P. Perona, J. Malik, Scale space and edge detection using anisotropic di usion, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, 629{639, 1990.
  2. B. Kawohl, N. Kutev, Maximum and comparison principles for anisotropic di usion, Preprint, Mathematical Institute, University of Cologne, 50923 Cologne, Germany, 1997.
  3. S. Kichenassamy, Nonlinear di usions and hyperbolic smoothing for edge enhancement, M.-O.
  4. Berger, R. Deriche, I. Herlin, J. Ja r e, J.-M. Morel (Eds.), ICAOS '96: Images, Wavelets and PDEs, Lecture Notes in Control and Information Sciences, Vol. 219, Springer, London, 119{124, 1996.
  5. S. Kichenassamy, The Perona{Malik paradox, SIAM J. Appl. Math., to appear.
  6. F. Catt e, P.-L. Lions, J.-M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear di usion, SIAM J. Numer. Anal., Vol. 29, 182{193, 1992.
  7. M. Nitzberg, T. Shiota, Nonlinear image ltering with edge and corner enhancement, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, 826{833, 1992.
  8. J. Weickert, B. Benhamouda, A semidiscrete nonlinear scale-space theory and its relation to the Perona{Malik paradox, F. Solina, W.G. Kropatsch, R. Klette, R. Bajcsy (Eds.), Theoretical foundations of computer vision (TFCV '96, Dagstuhl, March 18{22, 1996), Springer, Wien, in press.
  9. J. Weickert, Theoretical foundations of anisotropic di usion in image processing, Computing, Suppl. 11, 221{236, 1996.
  10. J. Weickert, Anisotropic di usion in image processing, Ph.D. thesis, Dept. of Mathematics, Uni- versity of Kaiserslautern, Germany, 1996. Revised version to be published by Teubner Verlag, Stuttgart, 1997.
  11. E.S. Posmentier, The generation of salinity nestructure by vertical di usion, J. Phys. Oceanogr., Vol. 7, 298{300, 1977.
  12. S.K. Dzhu Magazieva, Numerical study of a partial di erential equation, U.S.S.R. Comput. Maths. Math. Phys., Vol. 23, No. 4, 45{49, 1983.
  13. J. Fr ohlich, J. Weickert, Image processing using a wavelet algorithm for nonlinear di usion, Re- port No. 104, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994.
  14. R.T. Whitaker, S.M. Pizer, A multi-scale approach to nonuniform di usion, CVGIP: Image Un- derstanding, Vol. 57, 99{110, 1993.
  15. B. Benhamouda, Parameter adaptation for nonlinear di usion in image processing, master the- sis, Dept. of Mathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994.
  16. S.T. Acton, Edge enhancement of infrared imagery by way of the anisotropic di usion pyramid, Proc. IEEE Int. Conf. Image Processing (ICIP{96, Lausanne, Sept. 16{19, 1996), Vol. 1, 865{868, 1996.
  17. G. Cong, S.D. Ma, Nonlinear di usion for early vision, Proc. 13th Int. Conf. Pattern Recognition (ICPR 13, Vienna, Aug. 25{30, 1996), Vol. A, 403{406, 1996.
  18. K. H ollig, Existence of in nitely many solutions for a forward{backward heat equation, Trans. Amer. Math. Soc., Vol. 278, 299{316, 1983.
  19. P. Perona, T. Shiota, J. Malik, Anisotropic di usion, B.M. ter Haar Romeny (Ed.), Geometry- driven di usion in computer vision, Kluwer, Dordrecht, 72{92, 1994.
  20. Y.-L. You, W. Xu, A. Tannenbaum, M. Kaveh, Behavioral analysis of anisotropic di usion in image processing, IEEE Trans. Image Proc., Vol. 5, 1539{1553, 1996.
  21. T. Lindeberg, Scale-space for discrete signals, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, 234{254, 1990.
  22. J. Weickert, Nonlinear di usion scale-spaces: From the continuous to the discrete setting, M.-O.
  23. Berger, R. Deriche, I. Herlin, J. Ja r e, J.-M. Morel (Eds.), ICAOS '96: Images, wavelets and PDEs, Lecture Notes in Control and Information Sciences, Vol. 219, Springer, London, 111{118, 1996.
  24. W.J. Niessen, K.L. Vincken, J.A. Weickert, M.A. Viergever, Nonlinear multiscale representations for image segmentation, Computer Vision and Image Understanding, Vol. 66, 233{245, 1997.
  25. R.A. Hummel, Representations based on zero-crossings in scale space, Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition (CVPR '86, Miami Beach, June 22{26, 1986), IEEE Computer Society Press, Washington, 204{209, 1986.
  26. I. Pollak, A.S. Willsky, H. Krim, Scale space analysis by stabilized inverse di usion equations, B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Eds.), Scale-space theory in computer vision, Lecture Notes in Comp. Science, Vol. 1252, Springer, Berlin, 200{211, 1997.
  27. J. Weickert, B.M. ter Haar Romeny, M.A. Viergever, E cient and reliable schemes for nonlinear di usion ltering, IEEE Trans. Image Proc., 1998, to appear.