Classiflcation of indeflnite hyper-Kahler symmetric spaces
Abstract
We classify indefinite simply connected hyper-Kähler symmetric spaces. Any such space without flat factor has commutative holonomy group and signature (4m, 4m).
References (15)
- M.L. Barberis, I. Dotti-Miatello, Hypercomplex structures on a class of solvable Lie groups, Quart. J. Math. Oxford II. Ser. 47 (1996), no. 188, 389-404.
- M. Berger, Classification des espaces homogènes symétriques irréductibles, C.R. Acad. Sci. Paris 240 (1955), 2370-2372.
- M. Berger, Structure et classification des espaces homogènes symétriques à groupe d'isométries semi-simple, C. R. Acad. Sci. Paris 241 (1955), 1696-1698.
- M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comen., New Ser. 66 (1997), no. 2, 151-201.
- CP] M. Cahen, M. Parker, Sur des classes d'espaces pseudo-riemanniens symétriques, Bull. Soc. Math. Bely. 22 (1970), 339-354.
- CW] M. Cahen, N. Wallach, Lorentzian symmetric spaces, Bull. Amer. Math. Soc. 76 (1970), 585-591.
- A.S. Fedenko, Spaces defined by Lie group endomorphisms (Φ-spaces), Collection of articles dedicated to the memory of German Fedorovič Laptev, Trudy Geometr. Sem. 4 (1973), 231-267.
- D. Joyce, Compact hypercomplex and quaternionic manifolds, J. Diff. Geom. 35 (1992), 743-761.
- V.G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1990.
- A. Medina, P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. Ec. Norm. Super. IV. Ser. 18 (1985), 553-561.
- A. Medina, P. Revoy, Algèbres de Lie orthogonales. Modules orthogonaux, Commun. Algebra 21 (1993), no.7, 2295-2315.
- O-V] A.L. Onishchik, E.B. Vinberg (Eds.), Lie groups and Lie algebras III, Encyclodaedia of Mathematical Sciences 41, Springer, 1994.
- A.Z. Petrov, Einstein spaces, Pergamon, Oxford, 1969.
- Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen Extended super-symmetric σ- models on group manifolds, Nuclear Phys. B 308 (1988), 662-698.
- H. Wu, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291-311.