Academia.eduAcademia.edu

Outline

Classiflcation of indeflnite hyper-Kahler symmetric spaces

Abstract

We classify indefinite simply connected hyper-Kähler symmetric spaces. Any such space without flat factor has commutative holonomy group and signature (4m, 4m).

References (15)

  1. M.L. Barberis, I. Dotti-Miatello, Hypercomplex structures on a class of solvable Lie groups, Quart. J. Math. Oxford II. Ser. 47 (1996), no. 188, 389-404.
  2. M. Berger, Classification des espaces homogènes symétriques irréductibles, C.R. Acad. Sci. Paris 240 (1955), 2370-2372.
  3. M. Berger, Structure et classification des espaces homogènes symétriques à groupe d'isométries semi-simple, C. R. Acad. Sci. Paris 241 (1955), 1696-1698.
  4. M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comen., New Ser. 66 (1997), no. 2, 151-201.
  5. CP] M. Cahen, M. Parker, Sur des classes d'espaces pseudo-riemanniens symétriques, Bull. Soc. Math. Bely. 22 (1970), 339-354.
  6. CW] M. Cahen, N. Wallach, Lorentzian symmetric spaces, Bull. Amer. Math. Soc. 76 (1970), 585-591.
  7. A.S. Fedenko, Spaces defined by Lie group endomorphisms (Φ-spaces), Collection of articles dedicated to the memory of German Fedorovič Laptev, Trudy Geometr. Sem. 4 (1973), 231-267.
  8. D. Joyce, Compact hypercomplex and quaternionic manifolds, J. Diff. Geom. 35 (1992), 743-761.
  9. V.G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, 1990.
  10. A. Medina, P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. Ec. Norm. Super. IV. Ser. 18 (1985), 553-561.
  11. A. Medina, P. Revoy, Algèbres de Lie orthogonales. Modules orthogonaux, Commun. Algebra 21 (1993), no.7, 2295-2315.
  12. O-V] A.L. Onishchik, E.B. Vinberg (Eds.), Lie groups and Lie algebras III, Encyclodaedia of Mathematical Sciences 41, Springer, 1994.
  13. A.Z. Petrov, Einstein spaces, Pergamon, Oxford, 1969.
  14. Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen Extended super-symmetric σ- models on group manifolds, Nuclear Phys. B 308 (1988), 662-698.
  15. H. Wu, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291-311.