Academia.eduAcademia.edu

Outline

Design paradigms for meta-control in multi-agent systems

2007, Proceedings of AAMAS …

Abstract

In a multiagent system, intelligent agents can be thought of as having at least three broad categories of available actions (see Fig.1): domain actions (such as movement), deliberative actions (such as scheduling and coordination), and meta-level control [1–4] actions. Domain actions ...

References (17)

  1. Goldman, R., Musliner, D., Krebsbach, K.: Managing online self-adaptation in real-time environments. In: Lecture Notes in Computer Science. Volume 2614. Springer-Verlag (2003) 6-23
  2. Horvitz, E.: Rational metareasoning and compilation for optimizing decisions un- der bounded resources. In: Proceedings of Computational Intelligence, Milan, Italy (1989)
  3. Raja, A., Lesser, V.: Meta-level Reasoning in Deliberative Agents. Proceedings of the International Conference on Intelligent Agent Technology (IAT 2004) (Septem- ber 2004) 141-147
  4. Russell, S., Wefald, E.: Principles of metareasoning. In: Proceedings of the First In- ternational Conference on Principles of Knowledge Representation and Reasoning. (1989) 400-411
  5. Ghavamzadeh, M., Mahadevan, S.: Learning to communicate and act using hier- archical reinforcement learning. In: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2004)
  6. Cox, M.T.: Metacognition in computation: A selected research review. Artif. Intell. 169(2) (2005) 104-141
  7. Schut, M., Wooldridge, M.: The control of reasoning in resource-bounded agents. The Knowledge Engineering Review 16(3) (2001) 215-240
  8. Russell, S.J., Subramanian, D., Parr, R.: Provably bounded optimal agents. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelli- gence (IJCAI-93). (1993) 338-345
  9. Puterman, M.L.: Markov decision processes -discrete stochastic dynamic pro- gramming.Games as a Framework for Multi-Agent Reinforcement Learning. John Wiley and Sons, Inc., New York (1994)
  10. Hansen, E.A., Zilberstein, S.: Monitoring and control of anytime algorithms: A dynamic programming approach. Artif. Intell. 126(1-2) (2001) 139-157
  11. Decker, K.S., Lesser, V.R.: Quantitative modeling of complex environments. Inter- national Journal of Intelligent Systems in Accounting, Finance, and Management 2(4) (December 1993) 215-234
  12. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3) (1999) 264-323
  13. Mitchell, T.M.: Machine Learning. WCB/McGraw-Hill (1997)
  14. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press (1998)
  15. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont, MA (1996)
  16. Raja, A., Lesser, V., Wagner, T.: Toward Robust Agent Control in Open Envi- ronments. In: Proceedings of the Fourth International Conference on Autonomous Agents, Barcelona, Catalonia, Spain, ACM Press (July, 2000) 84-91
  17. Becker, R., Zilberstein, S., Lesser, V.R., Goldman, C.V.: Solving transition inde- pendent decentralized markov decision processes. J. Artif. Intell. Res. (JAIR) 22 (2004) 423-455