Normally Ordered Semigroups
2008, Glasgow Mathematical Journal
Abstract
In this paper we introduce the notion of normally ordered block-group as a natural extension of the notion of normally ordered inverse semigroup considered previously by the author. We prove that the class NOS of all normally ordered blockgroups forms a pseudovariety of semigroups and, by using the Munn representation of a block-group, we deduce the decompositions in Mal'cev products NOS = EI m POI and NOS ∩ A = N m POI, where A, EI and N denote the pseudovarieties of all aperiodic semigroups, all semigroups with just one idempotent and all nilpotent semigroups, respectively, and POI denotes the pseudovariety of semigroups generated all semigroups of injective order-preserving partial transformations on a finite chain. These relations are obtained after showing that BG = EI m Ecom = N m Ecom, where BG and Ecom denote the pseudovarieties of all block-groups and all semigroups with commuting idempotents, respectively.
References (17)
- J. Almeida, "Finite Semigroups and Universal Algebra", World Scientific, Singapore, 1995.
- J. Almeida and M.V. Volkov, The gap between partial and full, Int. J. Algebra Comput. 8 (1998), 399-430.
- D.F. Cowan and N.R. Reilly, Partial cross-sections of symmetric inverse semigroups, Int. J. Algebra Comput. 5 (1995), 259-287.
- D. Easdown, The minimal faithful degree of a fundamental inverse semi- group, Bull. Austral. Math. Soc. 35 (1987), 373-378.
- V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: a new class of divisors, Semigroup Forum 54 (1997), 230-236.
- V.H. Fernandes, Normally ordered inverse semigroups, Semigroup Forum 58 (1998), 418-433.
- V.H. Fernandes, A new class of divisors of semigroups of isotone mappings of finite chains, Russ. Math 46 (2002), 47-55 [translation of Izvestiya VUZ. Matematika 3 (478) (2002), 51-59] (English, Russian).
- V.H. Fernandes, The idempotent-separating degree of a block-group, Sub- mitted.
- K. Henckell, S. Margolis, J.-E. Pin and J. Rhodes, Ash's type II theorem, profinite topology and Malcev products. Part I, Int. J. Algebra Comput. 1 (1991), 411-436.
- P.M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Int. J. Algebra Comput. 5 (1995), 725-742.
- J.M. Howie, "Fundamentals of Semigroup Theory", Oxford University Press, 1995.
- M. Petrich, "Inverse Semigroups", John Wiley & Sons, 1984.
- J.-E. Pin, "Varieties of Formal Languages", North Oxford Academic, 1986.
- J.-E. Pin, BG = PG: a success story, Semigroups, Formal Languages and Groups, ed. J. Fountain, Kluwer Academic Pub., (1995), 33-47.
- V.B. Repnitskiȋ and M.V. Volkov, The finite basis problem for the pseu- dovariety O, Proc. R. Soc. Edinb., Sect. A, Math. 128 (1998), 661-669.
- J. Rhodes and P. Weil, Decomposition techniques for finite semigroups, using categories I, J. Pure and Applied Algebra 62 (1989), 269-284.
- A. Vernitskii and M.V. Volkov, A proof and generalisation of Higgins' division theorem for semigroups of order-preserving mappings, Izv.vuzov. Matematika 1 (1995), 38-44.