Academia.eduAcademia.edu

Outline

Centering and Shifting of Centrosomes in Cells

Cells

https://doi.org/10.3390/CELLS9061351

Abstract

Centrosomes have a nonrandom localization in the cells: either they occupy the centroid of the zone free of the actomyosin cortex or they are shifted to the edge of the cell, where their presence is justified from a functional point of view, for example, to organize additional microtubules or primary cilia. This review discusses centrosome placement options in cultured and in situ cells. It has been proven that the central arrangement of centrosomes is due mainly to the pulling microtubules forces developed by dynein located on the cell cortex and intracellular vesicles. The pushing forces from dynamic microtubules and actomyosin also contribute, although the molecular mechanisms of their action have not yet been elucidated. Centrosomal displacement is caused by external cues, depending on signaling, and is drawn through the redistribution of dynein, the asymmetrization of microtubules through the capture of their plus ends, and the redistribution of actomyosin, which, in turn, is a...

References (120)

  1. Wilson, E.B. The Cell in Development and Heredity, 3rd ed.; The Macmillan Co.: New York, NY, USA, 1925.
  2. Fokin, A.I.; Zhapparova, O.N.; Burakov, A.V.; Nadezhdina, E.S. Centrosome-derived microtubule radial array, PCM-1 protein, and primary cilia formation. Protoplasma 2019, 256, 1361-1373. [CrossRef]
  3. Hale, C.M.; Chen, W.C.; Khatau, S.B.; Daniels, B.R.; Lee, J.S.; Wirtz, D. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J. Cell Sci. 2011, 124, 4267-4285.
  4. Luxton, G.W.; Gundersen, G.G. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 2011, 23, 579-588. [CrossRef] [PubMed]
  5. Barker, A.R.; McIntosh, K.V.; Dawe, H.R. Centrosome positioning in non-dividing cells. Protoplasma 2016, 253, 1007-1021. [PubMed]
  6. Pouthas, F.; Girard, P.; Lecaudey, V.; Ly, T.B.; Gilmour, D.; Boulin, C.; Pepperkok, R.; Reynaud, E.G. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. J. Cell Sci. 2008, 121, 2406-2414. [PubMed]
  7. Doyle, A.D.; Wang, F.W.; Matsumoto, K.; Yamada, K.M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 2009, 184, 481-490.
  8. Zhang, J.; Wang, Y.L. Centrosome defines the rear of cells during mesenchymal migration. Mol. Biol. Cell 2017, 28, 3240-3251. [CrossRef]
  9. Jimenez, A.J.; de Pascalis, C.; Letort, G.; Vianay, B.; Goldman, R.D.; Bornens, M.; Piel, M.; Blanchoin, L.; Théry, M. Acto-myosin network geometry defines centrosome position. bioRxiv 2020. [CrossRef]
  10. Burakov, A.V.; Nadezhdina, E.S. Association of nucleus and centrosome: Magnet or velcro? Cell Biol. Int. 2013, 37, 95-104. [CrossRef]
  11. Feldman, J.L.; Geimer, S.; Marshall, W.F. The mother centriole plays an instructive role in defining cell geometry. PLoS Biol. 2007, 5, e149. [CrossRef]
  12. Goldspink, D.A.; Matthews, Z.J.; Lund, E.K.; Wileman, T.; Mogensen, M.M. Immuno-fluorescent Labeling of Microtubules and Centrosomal Proteins in Ex Vivo Intestinal Tissue and 3D In Vitro Intestinal Organoids. J. Vis. Exp. 2017, 130, 56662. [CrossRef] [PubMed]
  13. Goldspink, D.A.; Rookyard, C.; Tyrrell, B.J.; Gadsby, J.; Perkins, J.; Lund, E.K.; Galjart, N.; Thomas, P.; Wileman, T.; Mogensen, M.M. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol. 2017, 7, 160274. [PubMed]
  14. Komarova, I.A.; Vorob'ev, I.A. Ultrastructural changes in the cell center during enterocyte differentiation in the mouse. Tsitologiia 1993, 35, 36-43. [PubMed]
  15. Komarova, I.A.; Vorob'ev, I.A. The ultrastructure of the cell center in the enterocytes of mouse embryos and newborn mice. Ontogenez Russ. J. Dev. Biol. 1994, 25, 76-88.
  16. Komarova, I.A.; Vorob'ev, I.A. The centrosome structure in enterocytes in the histogenesis of the mouse intestine. Ontogenez Russ. J. Dev. Biol. 1995, 26, 390-399.
  17. Jonassen, J.A.; San Augustin, J.; Follit, J.A.; Pazour, G.J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 2008, 183, 377-384. [CrossRef]
  18. Dionne, L.K.; Shim, K.; Hoshi, M.; Cheng, T.; Wang, J.; Marthiens, V.; Knoten, A.; Basto, R.; Jain, S.; Mahjoub, M.R. Centrosome amplification disrupts renal development and causes cystogenesis. J. Cell Biol. 2018, 217, 2485-2501. [CrossRef]
  19. Fuertes-Alvarez, S.; Maeso-Alonso, L.; Villoch-Fernandez, J.; Wildung, M.; Martin-Lopez, M.; Marshall, C.; Villena-Cortes, A.J.; Diez-Prieto, I.; Pietenpol, J.A.; Tissir, F.; et al. p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton. Cell Death Dis. 2018, 9, 1183. [CrossRef]
  20. Rogers, K.A.; McKee, N.H.; Kalnins, V.I. Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment. Proc. Natl. Acad. Sci. USA 1985, 82, 3272-3276. [CrossRef]
  21. Henderson, C.G.; Tucker, J.B.; Chaplin, M.A.; Mackie, J.B.; Maidment, S.N.; Mogensen, M.M.; Paton, C.C. Reorganization of the centrosome and associated microtubules during the morphogenesis of a mouse cochlear epithelial cell. J. Cell Sci. 1994, 107, 589-600.
  22. Tang, N.; Marshall, W.F. Centrosome positioning in vertebrate development. J. Cell Sci. 2012, 125, 51-61.
  23. Burute, M.; Prioux, M.; Blin, G.; Truchet, S.; Letort, G.; Tseng, Q.; Bessy, T.; Lowell, S.; Young, J.; Filhol, O.; et al. Polarity Reversal by Centrosome Repositioning Primes Cell Scattering during Epithelial-to-Mesenchymal Transition. Dev. Cell 2017, 40, 168-184. [CrossRef] [PubMed]
  24. Kim, S.K.; Zhang, S.; Werner, M.E.; Brotslaw, E.J.; Mitchell, J.W.; Altabbaa, M.M.; Mitchell, B.J. CLAMP/Spef1 regulates planar cell polarity signaling and asymmetric microtubule accumulation in the Xenopus ciliated epithelia. J. Cell Biol. 2018, 217, 1633-1641. [CrossRef] [PubMed]
  25. Slim, C.L.; Lázaro-Diéguez, F.; Bijlard, M.; Toussaint, M.J.M.; de Bruin, A.; Du, Q.; Müsch, A.; van Ijzendoorn, S.C.D. Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes. PLoS Biol. 2013, 11, e1001739. [CrossRef] [PubMed]
  26. Bellett, G.; Carter, J.M.; Keynton, J.; Goldspink, D.; James, C.; Moss, D.K.; Mogensen, M.M. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells. Cell Motil. Cytoskelet. 2009, 66, 893-908. [CrossRef]
  27. Pitaval, A.; Senger, F.; Letort, G.; Gidro, X.; Guyon, L.; Sillibourne, J.; Théry, M. Microtubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis. J. Cell Biol. 2017, 216, 3713-3728.
  28. Jones, C.; Chen, P. Planar cell polarity signaling in vertebrates. Bioessays 2007, 29, 120-132. [CrossRef]
  29. Goodrich, L.V.; Strutt, D. Principles of planar polarity in animal development. Development 2011, 138, 1877-1892. [CrossRef]
  30. Carvajal-Gonzalez, J.M.; Mulero-Navarro, S.; Mlodzik, M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016, 38, 1234-1245.
  31. Roman, A.C.; Garrido-Jimenez, S.; Diaz-Chamorro, S.; Centeno, F.; Carvajal-Gonzalez, J.M. Centriole Positioning: Not Just a Little Dot in the Cell. Results Probl. Cell Differ. 2019, 67, 201-221. [PubMed]
  32. Chiplonkar, J.M.; Vandré, D.D.; Robinson, J.M. Stimulus-dependent relocation of the microtubule organizing center in human polymorphonuclear leukocytes. J. Cell Sci. 1992, 102, 723-728. [PubMed]
  33. Kupfer, A.; Swain, S.L.; Janeway, C.A., Jr.; Singer, S.J. The specific direct interaction of helper T cells and antigen-presenting B cells. Proc. Natl. Acad. Sci. USA 1986, 83, 6080-6083. [CrossRef] [PubMed]
  34. Sancho, D.; Vicente-Manzanares, M.; Mittelbrunn, M.; Montoya, M.C.; Gordón-Alonso, M.; Serrador, J.M.; Sánchez-Madrid, F. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol. Rev. 2002, 189, 84-97. [CrossRef] [PubMed]
  35. Martín-Cófreces, N.B.; Robles-Valero, J.; Cabrero, J.R.; Mittelbrunn, M.; Gordón-Alonso, M.; Sung, C.H.; Alarcón, B.; Vázquez, J.; Sánchez-Madrid, F. MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 2008, 182, 951-962. [CrossRef] [PubMed]
  36. Martín-Cófreces, N.B.; Alarcón, B.; Sánchez-Madrid, F. Tubulin and actin interplay at the T cell and antigen-presenting cell interface. Front. Immunol. 2011, 2, 24. [CrossRef] [PubMed]
  37. Kloc, M.; Kubiak, J.Z.; Ghobrial, R.M. The newly found functions of MTOC in immunological response. J. Leukoc. Biol. 2014, 95, 417-430. [CrossRef]
  38. Cassioli, C.; Baldari, C.T. A Ciliary View of the Immunological Synapse. Cells 2019, 8, 789. [CrossRef]
  39. Distel, M.; Hocking, J.C.; Volkmann, K.; Köster, R.W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J. Cell Biol. 2010, 191, 875-890. [CrossRef]
  40. Kiss, A.; Horvath, P.; Rothballer, A.; Kutay, U.; Csucs, G. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components. PLoS ONE 2014, 9, e93431. [CrossRef]
  41. Fischer, E.; Legue, E.; Doyen, A.; Nato, F.; Nicolas, J.F.; Torres, V.; Yaniv, M.; Pontoglio, M. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 2006, 38, 21-23. [CrossRef]
  42. Di Pietro, F.; Echard, A.; Morin, X. Regulation of mitotic spindle orientation: An integrated view. EMBO Rep. 2016, 17, 1106-1130. [CrossRef] [PubMed]
  43. Li, J.; Cheng, L.; Jiang, H. Cell shape and intercellular adhesion regulate mitotic spindle orientation. Mol. Biol. Cell 2019, 30, 2458-2468. [CrossRef] [PubMed]
  44. Letort, G.; Nedelec, F.; Blanchoin, L.; Théry, M. Centrosome centering and decentering by microtubule network rearrangement. Mol. Biol. Cell 2016, 27, 2833-2843. [CrossRef] [PubMed]
  45. Rappaport, R. Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 1986, 105, 245-281.
  46. Chatterjee, A.; Chinnappa, K.; Ramanan, N.; Mani, S. Centrosome Inheritance Does Not Regulate Cell Fate in Granule Neuron Progenitors of the Developing Cerebellum. Cerebellum 2018, 17, 685-691. [CrossRef]
  47. Mitchison, T.; Wühr, M.; Nguyen, P.; Ishihara, K.; Groen, A.; Field, C.M. Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells. Cytoskeleton (Hoboken) 2012, 69, 738-750.
  48. Li, J.; Jiang, H. Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size. Biophys. J. 2017, 112, 1503-1516. [CrossRef]
  49. Marshall, W.F.; Young, K.D.; Swaffer, M.; Wood, E.; Nurse, P.; Kimura, A.; Frankel, J.; Wallingford, J.; Walbot, V.; Qu, X.; et al. What determines cell size? BMC Biol. 2012, 10, 101. [CrossRef]
  50. Vinogradova, T.; Miller, P.M.; Kaverina, I. Microtubule network asymmetry in motile cells: Role of Golgi-derived array. Cell Cycle 2009, 8, 2168-2174. [CrossRef]
  51. Ferrari, R.; Infante, E.; Chavrier, P. Nucleus-Invadopodia Duo During Cancer Invasion. Trends Cell Biol. 2019, 29, 93-96. [CrossRef]
  52. Martin, M.; Veloso, A.; Wu, J.; Katrukha, E.A.; Akhmanova, A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. Elife 2018, 7, e33864. [CrossRef] [PubMed]
  53. Kushner, E.J.; Ferro, L.S.; Yu, Z.; Bautch, V.L. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation. Mol. Biol. Cell 2016, 27, 1911-1920. [PubMed]
  54. Garrido-Jimenez, S.; Roman, A.C.; Alvarez-Barrientos, A.; Carvajal-Gonzalez, J.M. Centriole planar polarity assessment in Drosophila wings. Development 2018, 145. [CrossRef]
  55. Mitchison, T.; Kirschner, M.W. Microtubule assembly nucleated by isolated centrosomes. Nature 1984, 12, 232-237. [CrossRef] [PubMed]
  56. Farina, F.; Gaillard, J.; Guérin, C.; Couté, Y.; Sillibourne, J.; Blanchoin, L.; Théry, M. The centrosome is an actin-organizing centre. Nat. Cell Biol. 2016, 18, 65-75.
  57. Palazzo, A.F.; Joseph, H.L.; Chen, Y.J.; Dujardin, D.L.; Alberts, A.S.; Pfister, K.K.; Vallee, R.B.; Gundersen, G.G. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 2001, 11, 1536-1541.
  58. Burakov, A.; Nadezhdina, E.; Slepchenko, B.; Rodionov, V. Centrosome positioning in interphase cells. J. Cell Biol. 2003, 162, 963-969. [CrossRef]
  59. Brito, D.A.; Strauss, J.; Magidson, V.; Tikhonenko, I.; Khodjakov, A.; Koonce, M.P. Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium. Mol. Biol. Cell 2005, 16, 3334-3340.
  60. Wu, J.; Misra, G.; Russell, R.J.; Ladd, A.J.; Lele, T.P.; Dickinson, R.B. Effects of dynein on microtubule mechanics and centrosome positioning. Mol. Biol. Cell 2011, 22, 4834-4841. [CrossRef]
  61. Mazel, T.; Biesemann, A.; Krejczy, M.; Nowald, J.; Müller, O.; Dehmelt, L. Direct observation of microtubule pushing by cortical dynein in living cells. Mol. Biol. Cell 2014, 25, 95-106.
  62. Odell, J.; Sikirzhytski, V.; Tikhonenko, I.; Cobani, S.; Khodjakov, A.; Koonce, M. Force balances between interphase centrosomes as revealed by laser ablation. Mol. Biol. Cell 2019, 30, 1705-1715. [CrossRef] [PubMed]
  63. Zhu, J.; Burakov, A.; Rodionov, V.; Mogilner, A. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: A computational study. Mol. Biol. Cell 2010, 21, 4418-4427. [PubMed]
  64. Laan, L.; Pavin, N.; Husson, J.; Romet-Lemonne, G.; van Duijn, M.; López, M.P.; Vale, R.D.; Jülicher, F.; Reck-Peterson, S.L.; Dogterom, M. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 2012, 148, 502-514. [CrossRef] [PubMed]
  65. Laan, L.; Roth, S.; Dogterom, M. End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers. Cell Cycle 2012, 11, 3750-3757. [PubMed]
  66. Wühr, M.; Dumont, S.; Groen, A.C.; Needleman, D.J.; Mitchison, T.J. How does a millimeter-sized cell find its center? Cell Cycle 2009, 8, 1115-1121. [CrossRef] [PubMed]
  67. Shinar, T.; Mana, M.; Piano, F.; Shelley, M.J. A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo. Proc. Natl. Acad. Sci. USA 2011, 108, 10508-10513.
  68. Longoria, R.A.; Shubeita, G.T. Cargo transport by cytoplasmic Dynein can center embryonic centrosomes. PLoS ONE 2013, 8, e67710.
  69. Tanimoto, H.; Kimura, A.; Minc, N. Shape-motion relationships of centering microtubule asters. J. Cell Biol. 2016, 212, 777-787. [CrossRef]
  70. Tanimoto, H.; Sallé, J.; Dodin, L.; Minc, N. Physical Forces Determining the Persistency and Centering Precision of Microtubule Asters. Nat. Phys. 2018, 14, 848-854. [CrossRef]
  71. Kimura, K.; Kimura, A. A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center. Bioarchitecture 2011, 1, 74-79. [CrossRef]
  72. Kimura, K.; Kimura, A. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo. Proc. Natl. Acad. Sci. USA 2011, 108, 137-142. [CrossRef] [PubMed]
  73. De Simone, A.; Spahr, A.; Busso, C.; Gönczy, P. Uncovering the balance of forces driving microtubule aster migration in C. elegans zygotes. Nat. Commun. 2018, 9, 938. [PubMed]
  74. Howard, J.; Garzon-Coral, C. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning. Bioessays 2017, 39, 1700122.
  75. Hasley, A.; Chavez, S.; Danilchik, M.; Wühr, M.; Pelegri, F. Vertebrate Embryonic Cleavage Pattern Determination. Adv. Exp. Med. Biol. 2017, 953, 117-171.
  76. Zulkipli, I.; Clark, J.; Hart, M.; Shrestha, R.L.; Gul, P.; Dang, D.; Kasichiwin, T.; Kujawiak, I.; Sastry, N.; Draviam, V.M. Spindle rotation in human cells is reliant on a MARK2-mediated equatorial spindle-centering mechanism. J. Cell Biol. 2018, 217, 3057-3070. [CrossRef]
  77. Uzbekov, R.; Kireyev, I.; Prigent, C. Centrosome separation: Respective role of microtubules and actin filaments. Biol. Cell 2002, 94, 275-288. [CrossRef]
  78. Cao, J.; Crest, J.; Fasulo, B.; Sullivan, W. Cortical actin dynamics facilitate early-stage centrosome separation. Curr. Biol. 2010, 20, 770-776. [CrossRef]
  79. Smith, E.; Hégarat, N.; Vesely, C.; Roseboom, I.; Larch, C.; Streicher, H.; Straatman, K.; Flynn, H.; Skehel, M.; Hirota, T.; et al. Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J. 2011, 30, 2233-2245.
  80. Hebert, A.M.; DuBoff, B.; Casaletto, J.B.; Gladden, A.B.; McClatchev, A.I. Merlin/ERM proteins establish cortical asymmetry and centrosome position. Genes Dev. 2012, 26, 2709-2723. [CrossRef]
  81. St Johnston, D.; Sanson, B. Epithelial polarity and morphogenesis. Curr. Opin. Cell Biol. 2011, 23, 540-546.
  82. Nunes de Almeida, F.; Walther, R.F.; Pressé, M.T.; Vlassaks, E.; Pichaud, F. Cdc42 defines apical identity and regulates epithelial morphogenesis by promoting apical recruitment of Par6-aPKC and Crumbs. Development 2019, 146. [CrossRef] [PubMed]
  83. Inoue, D.; Obino, D.; Pineau, J.; Farina, F.; Gaillard, J.; Guerin, C.; Blanchoin, L.; Lennon-Duménil, A.M.; Théry, M. Actin filaments regulate microtubule growth at the centrosome. EMBO J. 2019, 38, e99630. [CrossRef] [PubMed]
  84. Uzbekov, R.E.; Vorob'ev, I.A.; Drachev, V.A. The effect of the laser microirradiation of the cell center on neutrophil motility. Tsitologiia 1989, 31, 874-881. [PubMed]
  85. Luxton, G.W.; Gomes, E.R.; Folker, E.S.; Vintinner, E.; Gundersen, G.G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 2010, 329, 956-959. [CrossRef] [PubMed]
  86. Zhu, R.; Antoku, S.; Gundersen, G.G. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Curr. Biol. 2017, 27, 3097-3110. [CrossRef]
  87. Gonçalves, J.; Nolasco, S.; Nascimento, R.; Lopez Fanarraga, M.; Zabala, J.C.; Soares, H. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep. 2010, 11, 194-200. [CrossRef]
  88. Ou, Y.; Chan, G.; Zuo, J.; Rattner, J.B.; van der Hoorn, F.A. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration. J. Biol. Chem. 2016, 291, 15388-15403. [CrossRef]
  89. Théry, M.; Racine, V.; Piel, M.; Pépin, A.; Dimitrov, A.; Chen, Y.; Sibarita, J.B.; Bornens, M. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA 2006, 103, 19771. [CrossRef]
  90. Rodriguez, J.; Peglion, F.; Martin, J.; Hubatsch, L.; Reich, J.; Hirani, N.; Gubieda, A.G.; Roffey, J.; Fernandes, A.R.; St Johnston, D.; et al. aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Dev. Cell 2017, 42, 400-415. [CrossRef]
  91. Peglion, F.; Goehring, N. Switching states: Dynamic remodelling of polarity complexes as a toolkit for cell polarization. Curr. Opin. Cell Biol. 2019, 60, 121-130. [CrossRef]
  92. Dujardin, D.L.; Barnhart, L.E.; Stehman, S.A.; Gomes, E.R.; Gundersen, G.G.; Vallee, R.B. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 2003, 163, 1205-1211. [CrossRef] [PubMed]
  93. Fructuoso, M.; Legrand, M.; Mousson, A.; Steffan, T.; Vauchelles, R.; De Mey, J.; Sick, E.; Rondé, P.; Dujardin, D. FAK regulates dynein localisation and cell polarity in migrating mouse fibroblasts. Biol. Cell 2020, 112, 53-72. [CrossRef] [PubMed]
  94. Manneville, J.B.; Jehanno, M.; Etienne-Manneville, S. Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. J. Cell Biol. 2010, 191, 585-598. [CrossRef] [PubMed]
  95. Schmoranzer, J.; Fawcett, J.P.; Segura, M.; Tan, S.; Vallee, R.B.; Pawson, T.; Gundersen, G.G. Par3 and dynein associate to regulate local microtubule dynamics and centrosome orientation during migration. Curr. Biol. 2009, 19, 1065-1074. [PubMed]
  96. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 2013, 29, 471-499. [PubMed]
  97. Benseddik, K.; Sen Nkwe, N.; Daou, P.; Verdier-Pinard, P.; Badache, A. ErbB2-dependent chemotaxis requires microtubule capture and stabilization coordinated by distinct signaling pathways. PLoS ONE 2013, 8, e55211.
  98. Dubois, F.; Alpha, K.; Turner, C.E. Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Mol. Biol. Cell 2017, 28, 3815-3831. [CrossRef]
  99. Fukuda, T.; Sugita, S.; Inatome, R.; Yanagi, S. CAMDI, a novel disrupted in schizophrenia 1 (DISC1)-binding protein, is required for radial migration. J. Biol. Chem. 2010, 285, 40554-40561. [CrossRef]
  100. Rodríguez-Fraticelli, A.E.; Auzan, M.; Alonso, M.A.; Bornens, M.; Martín-Belmonte, F. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. J. Cell Biol. 2012, 198, 1011-1023. [CrossRef]
  101. Herrington, K.A.; Trinh, A.L.; Dang, C.; O'Shaughnessy, E.; Hahn, K.M.; Gratton, E.; Digman, M.A.; Sütterlin, C. Spatial analysis of Cdc42 activity reveals a role for plasma membrane-associated Cdc42 in centrosome regulation. Mol. Biol. Cell 2017, 28, 2135-2145. [CrossRef]
  102. Pichaud, F.; Walther, R.F.; Nunes de Almeida, F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J. Cell Sci. 2019, 132. [CrossRef] [PubMed]
  103. Carney, P.R.; Couve, E. Cell polarity changes and migration during early development of the avian peripheral auditory system. Anat. Rec. 1989, 225, 156-164. [PubMed]
  104. Liu, X.; Kapoor, T.M.; Chen, J.K.; Huse, M. Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc. Natl. Acad. Sci. USA 2013, 110, 11976-11981. [PubMed]
  105. Lomakin, A.J.; Semenova, I.; Zaliapin, I.; Kraikivski, P.; Nadezhdina, E.; Slepchenko, B.M.; Akhmanova, A.; Rodionov, V. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport. Dev. Cell 2009, 17, 323-333. [CrossRef] [PubMed]
  106. Yi, J.; Wu, X.; Chung, A.H.; Chen, J.K.; Kapoor, T.M.; Hammer, J.A. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J. Cell Biol. 2013, 202, 779-792. [CrossRef]
  107. Sarkar, A.; Rieger, H.; Paul, R. Search and Capture Efficiency of Dynamic Microtubules for Centrosome Relocation during IS Formation. Biophys. J. 2019, 116, 2079-2091. [CrossRef]
  108. Zyss, D.; Ebrahimi, H.; Gergely, F. Casein kinase I delta controls centrosome positioning during T cell activation. J. Cell Biol. 2011, 195, 781-797.
  109. Baratt, A.; Arkhipov, S.N.; Maly, I.V. An experimental and computational study of effects of microtubule stabilization on T-cell polarity. PLoS ONE 2008, 3, e3861.
  110. Obino, D.; Farina, F.; Malbec, O.; Sáez, P.J.; Maurin, M.; Gaillard, J.; Dingli, F.; Loew, D.; Gautreau, A.; Yuseff, M.I.; et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat. Commun. 2016, 7, 10969. [CrossRef] Cells 2020, 9, 1351 20 of 20
  111. Adler, P.N.; Wallingford, J.B. From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins. Trends Cell Biol. 2017, 27, 379-390.
  112. Shimada, Y.; Yonemura, S.; Ohkura, H.; Strutt, D.; Uemura, T. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 2006, 10, 209-222. [CrossRef] [PubMed]
  113. Mathewson, A.W.; Berman, D.G.; Moens, C.B. Microtubules are required for the maintenance of planar cell polarity in monociliated floorplate cells. Dev. Biol. 2019, 452, 21-33. [CrossRef] [PubMed]
  114. Harris, T.J.; Peifer, M. aPKC controls microtubule organization to balance adherens junction symmetry and planar polarity during development. Dev. Cell 2007, 12, 727-738. [PubMed]
  115. Haag, N.; Schüler, S.; Nietzsche, S.; Hübner, C.A.; Strenzke, N.; Qualmann, B.; Kessels, M.M. The Actin Nucleator Cobl Is Critical for Centriolar Positioning, Postnatal Planar Cell Polarity Refinement, and Function of the Cochlea. Cell Rep. 2018, 24, 2418-2431.
  116. Yamashita, Y.M.; Jones, D.L.; Fuller, M.T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003, 301, 1547-1550.
  117. Chen, C.; Cummings, R.; Mordovanakis, A.; Hunt, A.J.; Mayer, M.; Sept, D.; Yamashita, Y.M. Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division. Elife 2018, 7, e33685.
  118. Venkei, Z.G.; Yamashita, Y.M. The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis. Development 2015, 142, 62-69. [CrossRef]
  119. Uzbekov, R.; Garanina, A.; Burlaud-Gaillard, J.; Bressac, C. The Flagellum of the Shortest Spermatozoon in the Animal Kingdom: Elongation and Shortening of the Axoneme in the Process of Spermiogenesis of the Parasitic Wasp Cotesia Congregata. In Flagella and Cilia. Types, Structure and Functions; Uzbekov, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 83-108.
  120. Alieva, I.; Staub, C.; Uzbekova, S.; Uzbekov, R. A question of flagella origin for spermatids-Mother or daughter centriole. In Flagella and Cilia. Types, Structure and Functions; Uzbekov, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2018; pp. 109-126.