Multianalyzer Spectroscopic Data Fusion for Soil Characterization
Applied Sciences
https://doi.org/10.3390/APP10238723Abstract
The ability to rapidly conduct in-situ chemical analysis of multiple samples of soil and other geological materials in the field offers many advantages over a traditional approach that involves collecting samples for subsequent examination in the laboratory. This study explores the application of complementary spectroscopic analyzers and a data fusion methodology for the classification/discrimination of >100 soil samples from sites across the United States. Commercially available, handheld analyzers for X-ray fluorescence spectroscopy (XRFS), Raman spectroscopy (RS), and laser-induced breakdown spectroscopy (LIBS) were used to collect data both in the laboratory and in the field. Following a common data pre-processing protocol, principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA) were used to build classification models. The features generated by PLSDA were then used in a hierarchical classification approach to assess the relative advantage o...
References (61)
- Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6-23. [CrossRef]
- Esteban, J.; Starr, A.; Willetts, R.; Hannah, P.; Bryanston-Cross, P. A review of data fusion models and architectures: Towards engineering guidelines. Neural Comput. Appl. 2005, 14, 273-281. [CrossRef]
- Luo, R.C.; Chang, C.C.; Lai, C.C. Multisensor fusion and integration: Theories, applications, and its perspectives. IEEE Sens. J. 2011, 11, 3122-3138. [CrossRef]
- Roussel, S.; Bellon-Maurel, V.; Roger, J.M.; Grenier, P. Fusion of aroma, FT-IR and UV sensor data based on the Bayesian inference. Application to the discrimination of white grape varieties. Chemom. Intell. Lab. Syst. 2003, 65, 209-219. [CrossRef]
- Biancolillo, A.; Bucci, R.; Magrì, A.L.; Magrì, A.D.; Marini, F. Data-fusion for multiplatform characterization of an Italian craft beer aimed at its authentication. Anal. Chim. Acta 2014, 820, 23-31. [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment-A review. Anal. Chim. Acta 2015, 891, 1-14. [CrossRef] [PubMed]
- Deneckere, A.; De Vries, L.; Vekemans, B.; Van de Voorde, L.; Ariese, F.; Vincze, L.; Moens, L.; Vandenabeele, P. Identification of inorganic pigments used in porcelain cards based on fusing Raman and X-ray fluorescence (XRF) data. Appl. Spectrosc. 2011, 65, 1281-1290. [CrossRef]
- Donais, M.K.; George, D.; Duncan, B.; Wojtas, S.M.; Daigle, A.M. Evaluation of data processing and analysis approaches for fresco pigment studies by portable X-ray fluorescence spectrometry and portable Raman spectroscopy. Anal. Methods 2011, 3, 1061-1071. [CrossRef]
- Wiens, R.C.; Sharma, S.K.; Thompson, J.; Misra, A.; Lucey, P.G. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim. Acta A 2005, 61, 2324-2334.
- Khajehzadeh, N.; Haavisto, O.; Koresaar, L. On-stream mineral identification of tailing slurries of an iron ore concentrator using data fusion of LIBS, reflectance spectroscopy and XRF measurement techniques. Miner. Eng. 2017, 113, 83-94. [CrossRef]
- Xu, D.; Zhao, R.; Li, S.; Chen, S.; Jiang, Q.; Zhou, L.; Shi, Z. Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. Eur. J. Soil Sci. 2019, 70, 162-173. [CrossRef]
- Desta, F.; Buxton, M.; Jansen, J. Data fusion for the prediction of elemental concentrations in polymetallic sulphide ore using mid-wave infrared and long-wave infrared reflectance data. Minerals 2020, 10, 235.
- Gibbons, E.; Léveillé, R.; Berlo, K. Data fusion of laser-induced breakdown and Raman spectroscopies: Enhancing clay mineral identification. Spectrochim. Acta B 2020, 170, 105905. [CrossRef]
- Ahmed, N.; Ahmed, R.; Rafiqe, M.; Baig, M.A. A comparative study of Cu-Ni alloy using LIBS, LA-TOF, EDX, and XRF. Laser Part. Beams 2017, 35, 1-9. [CrossRef]
- Akhlaghi, I.A.; Haghighi, M.S.; Kahrobaee, S.; Hojati, M. Prediction of chemical composition and mechanical properties in powder metallurgical steels using multi-electromagnetic nondestructive methods and a data fusion system. J. Magn. Magn. Mater. 2020, 498, 166246. [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5-24.
- Du, P.; Liu, S.; Xia, J.; Zhao, Y. Information fusion techniques for change detection from multi-temporal remote sensing images. Inf. Fusion 2013, 14, 19-27. [CrossRef]
- Shen, H.; Meng, X.; Zhang, L. An integrated framework for the spatio-temporal-spectral fusion of remote sensing images. IEEE Trans. Geosci. Remote 2016, 54, 7135-7148. [CrossRef]
- Rasti, B.; Ghamisi, P. Remote sensing image classification using subspace sensor fusion. Inf. Fusion 2020, 64, 121-130. [CrossRef]
- Kam, M.; Zhu, X.; Kalata, P. Sensor fusion for mobile robot navigation. Proc. IEEE 1997, 85, 108-119.
- Luo, R.C.; Chang, C.C. Multisensor fusion and integration: A review on approaches and its applications in mechatronics. IEEE Trans. Industr. Inform. 2011, 8, 49-60. [CrossRef]
- Cremer, F.; Schutte, K.; Schavemaker, J.G.; den Breejen, E. A comparison of decision-level sensor-fusion methods for anti-personnel landmine detection. Inf. Fusion 2001, 2, 187-208. [CrossRef]
- Moros, J.; Laserna, J.J. New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal. Chem. 2011, 83, 6275-6285. [CrossRef] [PubMed]
- Hoehse, M.; Paul, A.; Gornushkin, I.; Panne, U. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal. Bioanal. Chem. 2012, 402, 1443-1450. [CrossRef]
- Klein, L.A. Sensor and Data Fusion: A Tool for Information Assessment and Decision Making; SPIE Press: Bellingham, WA, USA, 2004; 346p.
- Mahmood, H.S.; Hoogmoed, W.B.; van Henten, E.J. Sensor data fusion to predict multiple soil properties. Precis. Agric. 2012, 13, 628-645. [CrossRef]
- Sorak, D.; Herberholz, L.; Iwascek, S.; Altinpinar, S.; Pfeifer, F.; Siesler, H.W. New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Appl. Spectrosc. Rev. 2012, 47, 83-115. [CrossRef]
- Pellegrino Vidal, R.B.; Ibañez, G.A.; Escandar, G.M. Advantages of data fusion: First multivariate curve resolution analysis of fused liquid chromatographic second-order data with dual diode array-fluorescent detection. Anal. Chem. 2018, 89, 3029-3035. [CrossRef]
- Casian, T.; Farkas, A.; Ilyés, K.; Démuth, B.; Borbás, E.; Madarász, L.; Rapi, Z.; Farkas, B.; Balogh, A.; Domokos, A.; et al. Data fusion strategies for performance improvement of a process analytical technology platform consisting of four instruments: An electrospinning case study. Int. J. Pharm. 2019, 567, 118473. [CrossRef]
- Taggart, J.E.; Lindsay, J.R.; Scott, B.A.; Vivit, D.V.; Bartel, A.J.; Stewart, K.C. Analysis of geologic materials by wavelength-dispersive X-ray fluorescence spectrometry. Methods Geochem. Anal. US Geol. Surv. Bull. 1987, 1770, E1-E19.
- Klockenkämper, R.; Von Bohlen, A. Elemental analysis of environmental samples by total reflection X-ray fluorescence: A review. X-Ray Spectrom. 1996, 25, 156-162. [CrossRef]
- von Bohlen, A. Total reflection X-ray fluorescence and grazing incidence X-ray spectrometry-Tools for micro-and surface analysis. A review. Spectrochim. Acta B 2009, 64, 821-832. [CrossRef]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957-2976. [CrossRef] [PubMed]
- Efremov, E.V.; Ariese, F.; Gooijer, C. Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 2008, 606, 119-134. [CrossRef]
- Rostron, P.; Gaber, S.; Gaber, D. Raman spectroscopy, review. Int. J. Eng. Res. 2016, 6, 50-64.
- Lee, Y.I.; Song, K.; Sneddon, J. Laser-Induced Breakdown Spectrometry; Nova Publishers: Hauppauge, NY, USA, 2000; 178p.
- Miziolek, A.W.; Palleschi, V.; Schechter, I. (Eds.) Laser Induced Breakdown Spectroscopy; Cambridge University Press: Cambridge, UK, 2006; 620p. [CrossRef]
- Singh, J.P.; Thakur, S.N. (Eds.) Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; 620p.
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part I: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community. Appl. Spectrosc. 2010, 64, 335A-366A. [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347-419. [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; Wiley: New York, NY, USA, 2013; 281p. [CrossRef]
- Musazzi, S.; Perini, U. (Eds.) Laser Induced Breakdown Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2014; 564p. [CrossRef]
- McMillan, N.J.; Harmon, R.S.; De Lucia, F.C.; Miziolek, A.M. Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates. Spectrochim. Acta B 2007, 62, 1528-1536. [CrossRef]
- Gottfried, J.L.; Harmon, R.S.; De Lucia, F.C.; Miziolek, A.W. Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification. Spectrochim. Acta B 2009, 64, 1009-1019.
- Harmon, R.S.; Remus, J.; McMillan, N.J.; McManus, C.; Collins, L.; Gottfried, J.L.; DeLucia, F.C.; Miziolek, A.W. LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Appl. Geochem. 2009, 24, 1125-1141. [CrossRef]
- Harmon, R.S.; Hark, R.R.; Throckmorton, C.S.; Rankey, E.C.; Wise, M.A.; Somers, A.M.; Collins, L.M. Geochemical fingerprinting by handheld laser-induced breakdown spectroscopy. Geostand. Geoanalytical Res. 2017, 41, 563-584. [CrossRef]
- Harmon, R.S.; Throckmorton, C.S.; Hark, R.R.; Gottfried, J.L.; Wörner, G.; Harpp, K.; Collins, L. Discriminating volcanic centers with handheld laser-induced breakdown spectroscopy (LIBS). J. Archaeol. Sci. 2018, 98, 112-127. [CrossRef]
- Ciucci, A.; Palleschi, V.; Rastelli, S.; Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo, S.; Van der Steen, H.J.L. Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique. Appl. Phys. B 1996, 63, 185-190. [CrossRef]
- Essington, M.E.; Melnichenko, G.V.; Stewart, M.A.; Hull, R.A. Soil metals analysis using laser-induced breakdown spectroscopy (LIBS). Soil Sci. Soc. Am. J. 2009, 73, 1469-1478. [CrossRef]
- Unnikrishnan, V.K.; Nayak, R.; Aithal, K.; Kartha, V.B.; Santhosh, C.; Gupta, G.P.; Suri, B.M. Analysis of trace elements in complex matrices (soil) by Laser Induced Breakdown Spectroscopy (LIBS). Anal. Methods 2013, 5, 1294-1300. [CrossRef]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim. Acta B 2020, 175, 106013. [CrossRef]
- Ramos, P.M.; Ruisánchez, I.; Andrikopoulos, K.S. Micro-Raman and X-ray fluorescence spectroscopy data fusion for the classification of ochre pigments. Talanta 2008, 75, 926-936. [CrossRef]
- Sánchez-Esteva, S.; Knadel, M.; Kucheryavskiy, S.; de Jonge, L.W.; Rubaek, G.H.; Hermansen, C.; Heckrath, G. Combining laser-induced breakdown spectroscopy (LIBS) and visible near-infrared spectroscopy (Vis-NIRS) for soil phosphorus determination. Sensors 2020, 20, 5419. [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213-225. [CrossRef]
- Appl. Sci. 2020, 10, 8723
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109-130. [CrossRef]
- De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251-263. [CrossRef]
- Davies, L.; Gather, U. The identification of multiple outliers. J. Am. Stat. Assoc. 1993, 88, 782-792. [CrossRef]
- Jehlička, J.; Vitek, P.; Edwards, H.G.M.; Hargreaves, M.D.; Čapoun, T. Fast detection of sulphate minerals (gypsum, anglesite, baryte) by a portable Raman spectrometer. J. Raman Spectrosc. 2008, 40, 1082-1086.
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; 738p.
- Mehmood, T.; Liland, K.H.; Snipen, L.; Saebø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62-69. [CrossRef]