A river model of space
2013, The European Physical Journal Plus
https://doi.org/10.1140/EPJP/I2013-13024-2Abstract
Within the theory of general relativity gravitational phenomena are usually attributed to the curvature of four-dimensional spacetime. In this context we are often confronted with the question of how the concept of ordinary physical three-dimensional space fits into this picture. In this work we present a simple and intuitive model of space for both the Schwarzschild spacetime and the de Sitter spacetime in which physical space is defined as a specified set of freely moving reference particles. Using a combination of orthonormal basis fields and the usual formalism in a coordinate basis we calculate the physical velocity field of these reference particles. Thus we obtain a vivid description of space in which space behaves like a river flowing radially toward the singularity in the Schwarzschild spacetime and radially toward infinity in the de Sitter spacetime. We also consider the effect of the river of space upon light rays and material particles and show that the river model of space provides an intuitive explanation for the behavior of light and particles at and beyond the event horizons associated with these spacetimes.
References (18)
- A. J. S. Hamilton and J. P. Lisle, "The river model of black holes", Am. J. Phys. 76, 519 (2008).
- J. B. Hartle, Gravity: an introduction to Einstein's general relativity, Addison-Wesley, San Francisco (2003).
- T. Müller, "Falling into a Schwarzschild black hole", Gen. Relativ. Gravit. 40, 2185 (2008).
- C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco (1970), pp. 327-332.
- G. Cavalleri and G. Spinelli, "Motion of particles entering a Schwarzschild field", Lett. Nuovo Cimento 6, 5 (1973).
- G. Cavalleri and G. Spinelli, "Note on motion in the Schwarzschild field", Phys. Rev. D 15, 3065 (1977).
- G. Cavalleri and G. Spinelli, "Particle speed when approaching the Schwarzschild radius", Lett. Nuovo Cimento 22, 113 (1978).
- A. I. Janis, "Note on motion in the Schwarzschild field", Phys. Rev. D 8, 2360 (1973).
- A. I. Janis, "Motion in the Schwarzschild field: A reply", Phys. Rev. D 15, 3068 (1977).
- P. Crawford and I. Tereno, "Generalized observers and velocity measurements in general relativity", Gen. Rel. Gravit. 34, 2075 (2002).
- J. Jaffe and I. I. Shapiro, "Lightlike behavior of particles in a Schwarzschild field", Phys. Rev. D 6, 405 (1972).
- M. P. Bilaniuk, V. K. Deshpande and E. C. G. Sudarshan, ""Meta" Relativity", Am. J. Phys. 30, 718 (1962).
- G. Feinberg, "Possibility of faster-than-light particles", Phys. Rev. 159, 1089 (1967).
- R. A. Treumann, "Radiation from transcendent matter", Europhys. Lett. 16, 121 (1991).
- Ø. Grøn and Ø. Elgarøy, "Is space expanding in the Friedmann universe models?", Am. J. Phys. 75, 151 (2007).
- L. Landau and E. M. Lifshitz, The Classial Theory of Fields, 4th ed., Reed Educational and Professional Publishing Ltd, Oxford (2002).
- A. P. Lightman, W. H. Press, R. H. Price and S. A. Teukolsky, Problem book in relativity and gravitation, Princeton University Press, Princeton, New Jersey (1975).
- S. Dai and C. B. Guan, "Maximally symmetric subspace decomposition of the Schwarzschild black hole", arXiv:gr-qc/0406109v1 (2004).