Information flow and optimization in transcriptional regulation
2008, Proceedings of the National Academy of Sciences
https://doi.org/10.1073/PNAS.0806077105Abstract
In the simplest view of transcriptional regulation, the expression of a gene is turned on or off by changes in the concentration of a transcription factor (TF). We use recent data on noise levels in gene expression to show that it should be possible to transmit much more than just one regulatory bit. Realizing this optimal information capacity would require that the dynamic range of TF concentrations used by the cell, the input/output relation of the regulatory module, and the noise levels of binding and transcription satisfy certain matching relations. This parameter-free prediction is in good agreement with recent experiments on the Bicoid/Hunchback system in the early Drosophila embryo, and this system achieves ∼ 90% of its theoretical maximum information transmission.
References (31)
- F Jacob & J Monod, Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318-356 (1961).
- MB Elowitz, AJ Levine, ED Siggia & PD Swain, Stochastic gene expression in a single cell. Science 297, 1183 (2002).
- E Ozbudak, M Thattai, I Kurtser, AD Grossman & A van Oudenaarden, Regulation of noise in the expression of a single gene. Nature Gen 31, 69-73 (2002).
- WJ Blake, M Kaern, CR Cantor & JJ Collins, Noise in eukaryotic gene expression. Nature 422, 633-637 (2003).
- Y Setty, AE Mayo, MG Surette & U Alon, Detailed map of a cis-regulatory input function. Proc Nat'l Acad Sci (USA) 100, 7702-7707 (2003).
- JM Raser & EK O'Shea, Control of stochasticity in eu- karyotic gene expression. Science 304, 1811-1814 (2004).
- N Rosenfeld, JW Young, U Alon, PS Swain & MB Elowitz, Gene regulation at the single cell level. Science 307, 1962-1965 (2005).
- JM Pedraza & A van Oudenaarden, Noise propagation in gene networks. Science 307, 1965-1969 (2005).
- I Golding, J Paulsson, SM Zawilski & EC Cox, Real- time kinetics of gene activity in individual bacteria. Cell 123, 1025-1036 (2005).
- T Kuhlman, Z Zhang, MH Saier Jr & T Hwa, Combi- natorial transcriptional control of the lactose operon of Escherichia coli. Proc Nat'l Acad Sci (USA) 104, 6043- 6048 (2007).
- T Gregor, DW Tank, EF Wieschaus & W Bialek, Prob- ing the limits to positional information. Cell in press (2007).
- CE Shannon, A mathematical theory of communica- tion, Bell Sys. Tech. J. 27, 379-423 & 623-656 (1948). Reprinted in CE Shannon & W Weaver, The Mathe- matical Theory of Communication (University of Illinois Press, Urbana, 1949).
- TM Cover & JA Thomas, Elements of Information The- ory (John Wiley, New York, 1991).
- F Rieke, D Warland, R de Ruyter van Steveninck & W Bialek, Spikes: Exploring the Neural Code (MIT Press, Cambridge, 1997).
- E Ziv, I Nemenman & C Wiggins, Optimal signal processing in small stochastic biochemical networks. arXiv:q-bio.MN/0612041 (2006).
- HB Barlow, Possible principles underlying the transfor- mation of sensory messages. In Sensory Communication, W Rosenblith, ed, pp 217-234 (MIT Press, Cambridge, 1961).
- SB Laughlin, A simple coding procedure enhances a neu- ron's information capacity. Z Naturforsch 36c, 910-912 (1981).
- JJ Atick & AN Redlich, Towards a theory of early visual processing. Neural Comp 2, 308-320 (1990).
- N Brenner, W Bialek & R de Ruyter van Steveninck, Adaptive rescaling optimizes information transmission. Neuron 26, 695-702 (2000).
- RE Blahut, Computation of channel capacity and rate- distortion functions. IEEE Trans Info Th 4, 460-473 (1972).
- L Wolpert, Positional information and the spatial pat- tern of cellular differentiation. J Theor Biol 25, 1-47 (1969).
- PA Lawrence, The Making of a Fly: The Genetics of Animal Design (Blackwell, Oxford, 1992).
- W Driever & C Nüsslein-Volhard, A gradient of bicoid protein in Drosophila embryos. Cell 54, 83-93 (1988).
- W Driever & C Nüsslein-Volhard, The bicoid protein determines position in the Drosophila embryo. Cell 54, 95-104 (1988).
- W Driever & C Nüsslein-Volhard, The Bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337, 138-143 (1989).
- G Struhl, K Struhl & PM Macdonald, The gradient mor- phogen Bicoid is a concentration-dependent transcrip- tional activator. Cell 57, 1259-1273 (1989).
- G Tkačik, T Gregor & W Bialek, The role of input noise in transcriptional regulation. arXiv:q-bio.MN/0701002 (2007).
- R Silverman, On binary channels and their cascades. IEEE Trans Info Th 1, 19-27 (1955)
- R Rivera-Pomar & H Jäckle, From gradients to stripes in Drosophila embryogenesis: Filling in the gaps. Trends Gen 12, 478-483 (1996).
- A Ochoa-Espinosa et al, The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. Proc Nat'l Acad Sci USA, 102, 4960-4965 (2005).
- We thank T Gregor, DW Tank & EF Wieschaus for many helpful discussions, as well as for sharing the raw data from Ref [11]. This work was supported in part by NIH grants P50 GM071508 and R01 GM077599, by the Burroughs Well- come Fund Program in Biological Dynamics (GT) and by US Department of Energy grant DE-FG02-91ER40671 (CC).