Neural Correlates of Preference: A Transmodal Validation Study
Frontiers in Human Neuroscience
https://doi.org/10.3389/FNHUM.2019.00073Abstract
Liking is one of the most important psychological processes associated with the reward system, being involved in affective processing and pleasure/displeasure encoding. Currently, there is no consensus regarding the combination of physiological indicators which best predict liking, especially when applied to dynamic stimuli such as videos. There is a lack of a standard methodology to assess likeability over time and therefore in assessing narrative and semantic aspects of the stimulus. We developed a time-dependent method to evaluate the physiological correlates of likeability for three different thematic categories, namely: adventure (AV), comedy (CM), and nature landscape (LS). Twenty-eight healthy adults with ages ranging from 18 to 35 years (average: 23.85 years) were enrolled in the study. The participants were asked to provide likeability ratings for videos as they watched them, using a response box. Three 60-s videos were presented, one for each category, in randomized order while the participant's physiological data [electroencephalogram (EEG), electrocardiogram (ECG) and eye tracking (ET)] was recorded. The comedy video (CM) presented the smallest minimum accumulated normalized rating (ANR; p = 0.013) and the LS video presented the highest maximum ANR (p = 0.039). The LS video presented the longest time for first response (p < 0.001) and the AV video presented the shortest time for maximum response (p = 0.016). The LS video had the highest mean likeability rating with 1.43 ± 2.31 points; and the CM video had the lowest with 0.57 ± 1.77. Multiple linear regression models were created to predict the likeability of each video using the following physiological indicators; AV: power in beta band at C4 and P4 (p = 0.004, adj. R 2 = 0.301); CM: alpha power in Fp2 (p = 0.001, adj. R 2 = 0.326) and LS: alpha power in P4, F8, and Fp2; beta power in C4 and P4 and pupil size, (p = 0.002, adj. R 2 = 0.489). Despite its limitations (e.g., using one 1-min video per category) our findings suggest that there is a considerable difference in the psychophysiological correlates of stimuli with different contextual properties and that the use of time-dependent methods to assess videos should be considered as best practices.
References (53)
- Baddeley, A. (2010). Working memory. Curr. Biol. 20, R136-R140. doi: 10.1016/j. cub.2009.12.014
- Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179-209. doi: 10.1016/j.physbeh.2004.02.004
- Berridge, K. C., and Kringelbach, M. L. (2013). Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr. Opin. Neurobiol. 23, 294-303. doi: 10.1016/j.conb.2013.01.017
- Berridge, K. C., and Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron 86, 646-664. doi: 10.1016/j.neuron.2015.02.018
- Berridge, K. C., Robinson, T. E., and Aldridge, J. W. (2009). Dissecting components of reward: 'liking', 'wanting', and learning. Curr. Opin. Pharmacol. 9, 65-73. doi: 10.1016/j.coph.2008.12.014
- Bradley, M. M., and Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49-59. doi: 10.1016/0005-7916(94)90063-9
- Bradley, M. M., Miccoli, L., Escrig, M. A., and Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45, 602-607. doi: 10.1111/j.1469-8986.2008.00654.x
- Carvalho, S., Leite, J., Galdo-Álvarez, S., and Gonçalves, Ó. F. (2012). The emotional movie database (EMDB): a self-report and psychophysiological study. Appl. Psychophysiol. Biofeedback 37, 279-294. doi: 10.1007/s10484-012- 9201-6
- Chan, Y.-C., Liao, Y.-J., Tu, C.-H., and Chen, H.-C. (2016). Neural correlates of hostile jokes: cognitive and motivational processes in humor appreciation. Front. Hum. Neurosci. 10:527. doi: 10.3389/fnhum.2016.00527
- Codispoti, M., Surcinelli, P., and Baldaro, B. (2008). Watching emotional movies: affective reactions and gender differences. Int. J. Psychophysiol. 69, 90-95. doi: 10.1016/j.ijpsycho.2008.03.004
- Couto, B., Adolfi, F., Velasquez, M., Mesow, M., Feinstein, J., Canales-Johnson, A., et al. (2015). Heart evoked potential triggers brain responses to natural affective scenes: a preliminary study. Auton. Neurosci. 193, 132-137. doi: 10.1016/j. autneu.2015.06.006
- D'Mello, S. K., and Kory, J. (2015). A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. 47:A43. doi: 10.1145/2682899
- Davidson, R., and Tomarken, A. (1989). ''Laterality and emotion: an electrophysiological approach,'' in Handbook of Neuropsychology, eds F. Boller and A. J. Grafman (Amsterdam: Elsevier), 419-441.
- Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9-21. doi: 10.1016/j.jneumeth.2003.10.009
- Fernández, C., Pascual, J. C., Soler, J., Elices, M., Portella, M. J., and Fernández- Abascal, E. (2012). Physiological responses induced by emotion-eliciting films. Appl. Psychophysiol. Biofeedback 37, 73-79. doi: 10.1007/s10484-012- 9180-7
- Gerber, A. J., Posner, J., Gorman, D., Colibazzi, T., Yu, S., Wang, Z., et al. (2008). An affective circumplex model of neural systems subserving valence, arousal, and cognitive overlay during the appraisal of emotional faces. Neuropsychologia 46, 2129-2139. doi: 10.1016/j.neuropsychologia.2008.02.032
- Golland, Y., Keissar, K., and Levit-Binnun, N. (2014). Studying the dynamics of autonomic activity during emotional experience. Psychophysiology 51, 1101-1111. doi: 10.1111/psyp.12261
- Gomez, P., Zimmermann, P., Guttormsen-Schär, S., and Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biol. Psychol. 68, 223-235. doi: 10.1016/j.biopsycho.2004.06.003
- Guimarães, H. N., and Santos, R. A. (1998). A comparative analysis of preprocessing techniques of cardiac event series for the study of heart rhythm variability using simulated signals. Braz. J. Med. Biol. Res. 31, 421-430. doi: 10.1590/s0100-879x1998000300015
- Güzel Aydin, S., Kaya, T., and Guler, H. (2016). Wavelet-based study of valence- arousal model of emotions on EEG signals with LabVIEW. Brain Inform. 3, 109-117. doi: 10.1007/s40708-016-0031-9
- Han, C.-H., Lee, J.-H., Lim, J.-H., Kim, Y.-W., and Im, C.-H. (2017). Global electroencephalography synchronization as a new indicator for tracking emotional changes of a group of individuals during video watching. Front. Hum. Neurosci. 11:577. doi: 10.3389/fnhum.2017.00577
- Henson, R. N. A. (1998). Short-term memory for serial order: the start-end model. Cogn. Psychol. 36, 73-137. doi: 10.1006/cogp.1998.0685
- Holway, A. H., and Hurvich, L. (1937). Differential gustatory sensitivity to salt. Am. J. Psychol. 49, 37-48. doi: 10.2307/1416050
- Hort, J., Kemp, S., and Hollowood, T. (2017). Time-Dependent Measures of Perception in Sensory Evaluation. Sussex, UK: Willey Blackwell.
- Jager, G., Schlich, P., Tijssen, I., Yao, J., Visalli, M., de Graaf, C., et al. (2014). Temporal dominance of emotions: measuring dynamics of food-related emotions during consumption. Food Qual. Prefer. 37, 87-99. doi: 10.1016/j. foodqual.2014.04.010
- Just, M. A., Carpenter, P. A., and Miyake, A. (2003). Neuroindices of cognitive workload: neuroimaging, pupillometric and event-related potential studies of brain work. Theor. Issues Ergon. Sci. 4, 56-88. doi: 10.1080/1463922021 0159735
- Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al. (2012). DEAP: a database for emotion analysis;using physiological signals. IEEE Trans. Affect. Comput. 3, 18-31. doi: 10.1109/t-affc.2011.15
- Kortelainen, J., Väyrynen, E., and Seppänen, T. (2015). High-frequency electroencephalographic activity in left temporal area is associated with pleasant emotion induced by video clips. Comput. Intell. Neurosci. 2015:762769. doi: 10.1155/2015/762769
- Kringelbach, M. L., and Berridge, C. K. (2010). Pleasures of the Brain. New York, NY: Oxford University Press.
- Kühn, S., and Gallinat, J. (2012). The neural correlates of subjective pleasantness. Neuroimage 61, 289-294. doi: 10.1016/j.neuroimage.2012.02.065
- Kuppens, P., Tuerlinckx, F., Russell, J. A., and Barrett, L. F. (2013). The relation between valence and arousal in subjective experience. Psychol. Bull. 139, 917-940. doi: 10.1037/a0030811
- Mari, J. J., and Williams, P. (1986). A validity study of a psychiatric screening questionnaire (SRQ-20) in primary care in the city of Sao Paulo. Br. J. Psychiatry 148, 23-26. doi: 10.1192/bjp.148.1.23
- Neale, S., and Krutnik, F. (1990). Popular Film and Television Comedy. London: Routledge.
- Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/2011/156869
- Perakakis, P., Joffily, M., Taylor, M., Guerra, P., and Vila, J. (2010). KARDIA: a Matlab software for the analysis of cardiac interbeat intervals. Comput. Methods Programs Biomed. 98, 83-89. doi: 10.1016/j.cmpb.2009.10.002
- R.-Tavakoli, H., Atyabi, A., Rantanen, A., Laukka, S. J., Nefti-Meziani, S., and Heikkilä, J. (2015). Predicting the valence of a scene from observers' eye movements. PLoS One 10:e0138198. doi: 10.1371/journal.pone.0138198
- Ramsøy, T. Z., Jacobsen, C., Friis-Olivarius, M., Bagdziunaite, D., and Skov, M. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. J. Neurosci. Psychol. Econ. 10, 95-110. doi: 10.1037/npe0000073.supp
- Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161-1178. doi: 10.1037/h0077714
- Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145-172. doi: 10.1037//0033-295x.110.1.145
- Sánchez-Navarro, J. P., Martínez-Selva, J. M., Torrente, G., and Román, F. (2008). Psychophysiological, behavioral and cognitive indices of the emotional response: a factor-analytic study. Span. J. Psychol. 11, 16-25. doi: 10.1017/s1138741600004078
- Schellberg, D., Besthorn, C., Klos, T., and Gasser, T. (1990). EEG power and coherence while male adults watch emotional video films. Int. J. Psychophysiol. 9, 279-291. doi: 10.1016/0167-8760(90)90060-q
- Silberstein, R. B., and Nield, G. E. (2008). Brain activity correlates of consumer brand choice shift associated with television advertising. Int. J. Advert. 27, 359-380. doi: 10.2501/s0265048708080025
- Smith, K. S., Berridge, K. C., and Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc. Natl. Acad. Sci. U S A 108, E255-E264. doi: 10.1073/pnas.11019 20108
- Steiner, J. E., Glaser, D., Hawilo, M. E., and Berridge, K. C. (2001). Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev. 25, 53-74. doi: 10.1016/s0149- 7634(00)00051-8
- Sudre, J., Pineau, N., Loret, C., and Martin, N. (2012). Comparison of methods to monitor liking of food during consumption. Food Qual. Prefer. 24, 179-189. doi: 10.1016/j.foodqual.2011.10.013
- Taylor, D., and Pangborn, R. M. (1990). Temporal aspects of hedonic responses. J. Sens. Stud. 4, 241-247. doi: 10.1111/j.1745-459x.1990.tb00475.x
- Thomas, A., Visalli, M., Cordelle, S., and Schlich, P. (2015). Temporal drivers of liking, food quality and preference. Food Qual. Prefer. 40, 365-375. doi: 10.1016/j.foodqual.2014.03.003
- Uekermann, J., Daum, I., and Channon, S. (2007). Toward a cognitive and social neuroscience of humor processing. Soc. Cogn. 25, 553-572. doi: 10.1521/soco. 2007.25.4.553
- Vallar, G., and Papagno, C. (1986). Phonological short-term store and the nature of the recency effect: evidence from neuropsychology. Brain Cogn. 5, 428-442. doi: 10.1016/0278-2626(86)90044-8
- Vecchiato, G., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Salinari, S., et al. (2010). Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topogr. 23, 165-179. doi: 10.1007/s10548-009-0127-0
- Vecchiato, G., Cherubino, P., Maglione, A. G., Ezquierro, M. T. H., Marinozzi, F., Bini, F., et al. (2014). How to measure cerebral correlates of emotions in marketing relevant tasks. Cogn. Comput. 6, 856-871. doi: 10.1007/s12559-014- 9304-x Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., et al. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Med. Biol. Eng. Comput. 49, 579-583. doi: 10.1007/s11517-011-0747-x
- Vrticka, P., Black, J. M., and Reiss, A. L. (2013). The neural basis of humour processing. Nat. Rev. Neurosci. 14, 860-868. doi: 10.1038/nrn3566
- YIlmaz, B., Korkmaz, S., Arslan, D. B., Güngör, E., and AsyalI, M. H. (2014). Like/dislike analysis using EEG: determination of most discriminative channels and frequencies. Comput. Methods Programs Biomed. 113, 705-713. doi: 10.1016/j.cmpb.2013.11.010