Academia.eduAcademia.edu

Outline

Neural Correlates of Preference: A Transmodal Validation Study

Frontiers in Human Neuroscience

https://doi.org/10.3389/FNHUM.2019.00073

Abstract

Liking is one of the most important psychological processes associated with the reward system, being involved in affective processing and pleasure/displeasure encoding. Currently, there is no consensus regarding the combination of physiological indicators which best predict liking, especially when applied to dynamic stimuli such as videos. There is a lack of a standard methodology to assess likeability over time and therefore in assessing narrative and semantic aspects of the stimulus. We developed a time-dependent method to evaluate the physiological correlates of likeability for three different thematic categories, namely: adventure (AV), comedy (CM), and nature landscape (LS). Twenty-eight healthy adults with ages ranging from 18 to 35 years (average: 23.85 years) were enrolled in the study. The participants were asked to provide likeability ratings for videos as they watched them, using a response box. Three 60-s videos were presented, one for each category, in randomized order while the participant's physiological data [electroencephalogram (EEG), electrocardiogram (ECG) and eye tracking (ET)] was recorded. The comedy video (CM) presented the smallest minimum accumulated normalized rating (ANR; p = 0.013) and the LS video presented the highest maximum ANR (p = 0.039). The LS video presented the longest time for first response (p < 0.001) and the AV video presented the shortest time for maximum response (p = 0.016). The LS video had the highest mean likeability rating with 1.43 ± 2.31 points; and the CM video had the lowest with 0.57 ± 1.77. Multiple linear regression models were created to predict the likeability of each video using the following physiological indicators; AV: power in beta band at C4 and P4 (p = 0.004, adj. R 2 = 0.301); CM: alpha power in Fp2 (p = 0.001, adj. R 2 = 0.326) and LS: alpha power in P4, F8, and Fp2; beta power in C4 and P4 and pupil size, (p = 0.002, adj. R 2 = 0.489). Despite its limitations (e.g., using one 1-min video per category) our findings suggest that there is a considerable difference in the psychophysiological correlates of stimuli with different contextual properties and that the use of time-dependent methods to assess videos should be considered as best practices.

References (53)

  1. Baddeley, A. (2010). Working memory. Curr. Biol. 20, R136-R140. doi: 10.1016/j. cub.2009.12.014
  2. Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179-209. doi: 10.1016/j.physbeh.2004.02.004
  3. Berridge, K. C., and Kringelbach, M. L. (2013). Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr. Opin. Neurobiol. 23, 294-303. doi: 10.1016/j.conb.2013.01.017
  4. Berridge, K. C., and Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron 86, 646-664. doi: 10.1016/j.neuron.2015.02.018
  5. Berridge, K. C., Robinson, T. E., and Aldridge, J. W. (2009). Dissecting components of reward: 'liking', 'wanting', and learning. Curr. Opin. Pharmacol. 9, 65-73. doi: 10.1016/j.coph.2008.12.014
  6. Bradley, M. M., and Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49-59. doi: 10.1016/0005-7916(94)90063-9
  7. Bradley, M. M., Miccoli, L., Escrig, M. A., and Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45, 602-607. doi: 10.1111/j.1469-8986.2008.00654.x
  8. Carvalho, S., Leite, J., Galdo-Álvarez, S., and Gonçalves, Ó. F. (2012). The emotional movie database (EMDB): a self-report and psychophysiological study. Appl. Psychophysiol. Biofeedback 37, 279-294. doi: 10.1007/s10484-012- 9201-6
  9. Chan, Y.-C., Liao, Y.-J., Tu, C.-H., and Chen, H.-C. (2016). Neural correlates of hostile jokes: cognitive and motivational processes in humor appreciation. Front. Hum. Neurosci. 10:527. doi: 10.3389/fnhum.2016.00527
  10. Codispoti, M., Surcinelli, P., and Baldaro, B. (2008). Watching emotional movies: affective reactions and gender differences. Int. J. Psychophysiol. 69, 90-95. doi: 10.1016/j.ijpsycho.2008.03.004
  11. Couto, B., Adolfi, F., Velasquez, M., Mesow, M., Feinstein, J., Canales-Johnson, A., et al. (2015). Heart evoked potential triggers brain responses to natural affective scenes: a preliminary study. Auton. Neurosci. 193, 132-137. doi: 10.1016/j. autneu.2015.06.006
  12. D'Mello, S. K., and Kory, J. (2015). A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. 47:A43. doi: 10.1145/2682899
  13. Davidson, R., and Tomarken, A. (1989). ''Laterality and emotion: an electrophysiological approach,'' in Handbook of Neuropsychology, eds F. Boller and A. J. Grafman (Amsterdam: Elsevier), 419-441.
  14. Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9-21. doi: 10.1016/j.jneumeth.2003.10.009
  15. Fernández, C., Pascual, J. C., Soler, J., Elices, M., Portella, M. J., and Fernández- Abascal, E. (2012). Physiological responses induced by emotion-eliciting films. Appl. Psychophysiol. Biofeedback 37, 73-79. doi: 10.1007/s10484-012- 9180-7
  16. Gerber, A. J., Posner, J., Gorman, D., Colibazzi, T., Yu, S., Wang, Z., et al. (2008). An affective circumplex model of neural systems subserving valence, arousal, and cognitive overlay during the appraisal of emotional faces. Neuropsychologia 46, 2129-2139. doi: 10.1016/j.neuropsychologia.2008.02.032
  17. Golland, Y., Keissar, K., and Levit-Binnun, N. (2014). Studying the dynamics of autonomic activity during emotional experience. Psychophysiology 51, 1101-1111. doi: 10.1111/psyp.12261
  18. Gomez, P., Zimmermann, P., Guttormsen-Schär, S., and Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biol. Psychol. 68, 223-235. doi: 10.1016/j.biopsycho.2004.06.003
  19. Guimarães, H. N., and Santos, R. A. (1998). A comparative analysis of preprocessing techniques of cardiac event series for the study of heart rhythm variability using simulated signals. Braz. J. Med. Biol. Res. 31, 421-430. doi: 10.1590/s0100-879x1998000300015
  20. Güzel Aydin, S., Kaya, T., and Guler, H. (2016). Wavelet-based study of valence- arousal model of emotions on EEG signals with LabVIEW. Brain Inform. 3, 109-117. doi: 10.1007/s40708-016-0031-9
  21. Han, C.-H., Lee, J.-H., Lim, J.-H., Kim, Y.-W., and Im, C.-H. (2017). Global electroencephalography synchronization as a new indicator for tracking emotional changes of a group of individuals during video watching. Front. Hum. Neurosci. 11:577. doi: 10.3389/fnhum.2017.00577
  22. Henson, R. N. A. (1998). Short-term memory for serial order: the start-end model. Cogn. Psychol. 36, 73-137. doi: 10.1006/cogp.1998.0685
  23. Holway, A. H., and Hurvich, L. (1937). Differential gustatory sensitivity to salt. Am. J. Psychol. 49, 37-48. doi: 10.2307/1416050
  24. Hort, J., Kemp, S., and Hollowood, T. (2017). Time-Dependent Measures of Perception in Sensory Evaluation. Sussex, UK: Willey Blackwell.
  25. Jager, G., Schlich, P., Tijssen, I., Yao, J., Visalli, M., de Graaf, C., et al. (2014). Temporal dominance of emotions: measuring dynamics of food-related emotions during consumption. Food Qual. Prefer. 37, 87-99. doi: 10.1016/j. foodqual.2014.04.010
  26. Just, M. A., Carpenter, P. A., and Miyake, A. (2003). Neuroindices of cognitive workload: neuroimaging, pupillometric and event-related potential studies of brain work. Theor. Issues Ergon. Sci. 4, 56-88. doi: 10.1080/1463922021 0159735
  27. Koelstra, S., Muhl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., et al. (2012). DEAP: a database for emotion analysis;using physiological signals. IEEE Trans. Affect. Comput. 3, 18-31. doi: 10.1109/t-affc.2011.15
  28. Kortelainen, J., Väyrynen, E., and Seppänen, T. (2015). High-frequency electroencephalographic activity in left temporal area is associated with pleasant emotion induced by video clips. Comput. Intell. Neurosci. 2015:762769. doi: 10.1155/2015/762769
  29. Kringelbach, M. L., and Berridge, C. K. (2010). Pleasures of the Brain. New York, NY: Oxford University Press.
  30. Kühn, S., and Gallinat, J. (2012). The neural correlates of subjective pleasantness. Neuroimage 61, 289-294. doi: 10.1016/j.neuroimage.2012.02.065
  31. Kuppens, P., Tuerlinckx, F., Russell, J. A., and Barrett, L. F. (2013). The relation between valence and arousal in subjective experience. Psychol. Bull. 139, 917-940. doi: 10.1037/a0030811
  32. Mari, J. J., and Williams, P. (1986). A validity study of a psychiatric screening questionnaire (SRQ-20) in primary care in the city of Sao Paulo. Br. J. Psychiatry 148, 23-26. doi: 10.1192/bjp.148.1.23
  33. Neale, S., and Krutnik, F. (1990). Popular Film and Television Comedy. London: Routledge.
  34. Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J. M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869. doi: 10.1155/2011/156869
  35. Perakakis, P., Joffily, M., Taylor, M., Guerra, P., and Vila, J. (2010). KARDIA: a Matlab software for the analysis of cardiac interbeat intervals. Comput. Methods Programs Biomed. 98, 83-89. doi: 10.1016/j.cmpb.2009.10.002
  36. R.-Tavakoli, H., Atyabi, A., Rantanen, A., Laukka, S. J., Nefti-Meziani, S., and Heikkilä, J. (2015). Predicting the valence of a scene from observers' eye movements. PLoS One 10:e0138198. doi: 10.1371/journal.pone.0138198
  37. Ramsøy, T. Z., Jacobsen, C., Friis-Olivarius, M., Bagdziunaite, D., and Skov, M. (2017). Predictive value of body posture and pupil dilation in assessing consumer preference and choice. J. Neurosci. Psychol. Econ. 10, 95-110. doi: 10.1037/npe0000073.supp
  38. Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161-1178. doi: 10.1037/h0077714
  39. Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145-172. doi: 10.1037//0033-295x.110.1.145
  40. Sánchez-Navarro, J. P., Martínez-Selva, J. M., Torrente, G., and Román, F. (2008). Psychophysiological, behavioral and cognitive indices of the emotional response: a factor-analytic study. Span. J. Psychol. 11, 16-25. doi: 10.1017/s1138741600004078
  41. Schellberg, D., Besthorn, C., Klos, T., and Gasser, T. (1990). EEG power and coherence while male adults watch emotional video films. Int. J. Psychophysiol. 9, 279-291. doi: 10.1016/0167-8760(90)90060-q
  42. Silberstein, R. B., and Nield, G. E. (2008). Brain activity correlates of consumer brand choice shift associated with television advertising. Int. J. Advert. 27, 359-380. doi: 10.2501/s0265048708080025
  43. Smith, K. S., Berridge, K. C., and Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc. Natl. Acad. Sci. U S A 108, E255-E264. doi: 10.1073/pnas.11019 20108
  44. Steiner, J. E., Glaser, D., Hawilo, M. E., and Berridge, K. C. (2001). Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev. 25, 53-74. doi: 10.1016/s0149- 7634(00)00051-8
  45. Sudre, J., Pineau, N., Loret, C., and Martin, N. (2012). Comparison of methods to monitor liking of food during consumption. Food Qual. Prefer. 24, 179-189. doi: 10.1016/j.foodqual.2011.10.013
  46. Taylor, D., and Pangborn, R. M. (1990). Temporal aspects of hedonic responses. J. Sens. Stud. 4, 241-247. doi: 10.1111/j.1745-459x.1990.tb00475.x
  47. Thomas, A., Visalli, M., Cordelle, S., and Schlich, P. (2015). Temporal drivers of liking, food quality and preference. Food Qual. Prefer. 40, 365-375. doi: 10.1016/j.foodqual.2014.03.003
  48. Uekermann, J., Daum, I., and Channon, S. (2007). Toward a cognitive and social neuroscience of humor processing. Soc. Cogn. 25, 553-572. doi: 10.1521/soco. 2007.25.4.553
  49. Vallar, G., and Papagno, C. (1986). Phonological short-term store and the nature of the recency effect: evidence from neuropsychology. Brain Cogn. 5, 428-442. doi: 10.1016/0278-2626(86)90044-8
  50. Vecchiato, G., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Salinari, S., et al. (2010). Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topogr. 23, 165-179. doi: 10.1007/s10548-009-0127-0
  51. Vecchiato, G., Cherubino, P., Maglione, A. G., Ezquierro, M. T. H., Marinozzi, F., Bini, F., et al. (2014). How to measure cerebral correlates of emotions in marketing relevant tasks. Cogn. Comput. 6, 856-871. doi: 10.1007/s12559-014- 9304-x Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., et al. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Med. Biol. Eng. Comput. 49, 579-583. doi: 10.1007/s11517-011-0747-x
  52. Vrticka, P., Black, J. M., and Reiss, A. L. (2013). The neural basis of humour processing. Nat. Rev. Neurosci. 14, 860-868. doi: 10.1038/nrn3566
  53. YIlmaz, B., Korkmaz, S., Arslan, D. B., Güngör, E., and AsyalI, M. H. (2014). Like/dislike analysis using EEG: determination of most discriminative channels and frequencies. Comput. Methods Programs Biomed. 113, 705-713. doi: 10.1016/j.cmpb.2013.11.010